Developer member adapted for depositing developer material...

Electrophotography – Image formation – Development

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C399S267000

Reexamination Certificate

active

06775504

ABSTRACT:

BACKGROUND AND SUMMARY OF THE PRESENT INVENTION
The invention relates generally to an electrophotographic printing machine and, more particularly, to a development system which includes a magnetic developer roll for transporting magnetic developer materials to a development zone; and a magnetic system for generating a magnetic field to reduce developer material bed height in the development zone.
Generally, an electrophotographic printing machine includes a photoconductive member which is charged to a substantially uniform potential to sensitize the surface thereof. The charged portion of the photoconductive member is exposed to an optical light pattern representing a document being produced. This records an electrostatic latent image on the photoconductive member corresponding to the informational areas contained within the document. After the electrostatic latent image is formed on the photoconductive member, the image is developed by bringing a developer material into proximal contact therewith. Typically, the developer material comprises toner particles adhering triboelectrically to carrier granules. The toner particles are attracted to the latent image from the carrier granules and form a powder image on the photoconductive member which is subsequently transferred to a a copy sheet. Finally, the copy sheet is heated or otherwise processed to permanently affix the powder image thereto in the desired image-wise configuration.
In the prior art, both interactive and non-interactive development has been accomplished with magnetic brushes. In typical interactive embodiments, the magnetic brush is in the form of a rigid cylindrical sleeve which rotates around a fixed assembly of permanent magnets. In this type of development system, the cylindrical sleeve is usually made of an electrically conductive, non-ferrous material such as aluminum or stainless steel, with its outer surface textured to control developer adhesion. The rotation of the sleeve transports magnetically adhered developer through the development zone where there is direct contact between the developer brush and the imaged surface, and charged toner particles ware stripped from the passing magnetic brush filaments by the electrostatic fields of the image.
These systems can employ magnetically hard ferromagnetic material, for example U.S. Pat. No. 4,546,060 discloses an electrographic, two-component dry developer composition comprising charged toner particles and oppositely charged, magnetic carrier particles, which (a) comprise a magnetic material exhibiting “hard” magnetic properties, as characterized by a coercivity of at least 300 gauss and (b) exhibit an induced magnetic moment of at least 20 EMU/gm when in an applied field of 1000 gauss, is disclosed. Magnetically “hard” carrier materials include strontium ferrite and barium ferrite, for example. These carrier materials tend to be electrically insulative as employed in electrophotographic development subsystems. The developer is employed in combination with a magnetic applicator comprising a rotatable magnetic core, and an outer, nonmagnetizable shell to develop electrostatic images.
Non-interactive development is most useful in color systems when a given color toner must be deposited on an electrostatic image without disturbing previously applied toner deposits of a different color or cross-contaminating the color toner supplies.
It has been observed in systems employing magnetically hard ferromagnetic material that the magnetic brush height formed by the developer mass in the magnetic fields on the sleeve surface in this type development system is periodic in thickness and statistically noisy as a result of complex carrier bead agglomeration and filament exchange mechanisms that occur during operation. As a result, substantial clearance must be provided in the development gap to avoid photoconductive member interactions through direct physical contact, so that the use of a closely spaced development electrode critical to high fidelity image development is precluded. The effective development electrode is essentially the development sleeve surface in the case of insulative development systems although for conductive magnetic brush systems the effective electrode spacing is significantly reduced.
It has also been found that in the fixed assembly of permanent magnets, the magnetic pole spacing thereof cannot be reduced to an arbitrarily small size because allowance for the thickness of the sleeve and a reasonable mechanical clearance between the sleeve and the rotating magnetic core sets a minimum working range for the magnetic multiple forces required to both hold and tumble the developer blanket on the sleeve. Since the internal pole geometry defining the spatial wavelength of the tumbling component also governs the magnitude of the holding forces for the developer blanket at any given range, there is only one degree of design freedom available to satisfy the opposing system requirements of short spatial wavelength and strong holding force. Reducing the developer blanket mass by supply starvation has been found to result in a sparse brush structure without substantially reducing the brush filament lengths or improving the uneven length distribution.
The above problems with controlling developer bed height are exacerbated when magnetically soft carrier material is employed such as disclosed in U.S. Pat. Nos. 6,143,456; 4,937,166; 4,233,387; 5,505,760; and 4,345,014 which are hereby incorporated by reference. U.S. Pat. No. 4,345,014 discloses a magnetic brush development apparatus which utilizes a two-component developer of the type described. The magnetic applicator is of the type in which the multiple pole magnetic core rotates to effect movement of the developer to a development zone. The magnetic carrier disclosed in this patent is of the conventional variety in that it comprises relatively “soft” magnetic material (e.g., magnetite, pure iron, ferrite or a form of Fe
3
O
4
). having a magnetic coercivity, Hc, of about 100 gauss or less. Such soft magnetic materials have been preferred heretofore because they inherently exhibit a low magnetic remittance, B
R
, (e.g., less than about 5 EMU/gm) and a high induced magnetic moment in the field applied by the brush core.
It is desirable to use magnetically soft carrier material because having a low magnetic reemergence, soft magnetic carrier particles retain only a small amount of the magnetic moment induced by a magnetic field after being removed from such field; thus, they easily intermix and replenish with toner particles after being used for development. Additionally, conductive carrier material options are significantly broadened for the “soft” magnetic carriers. Also having a relatively high magnetic rmoment when attracted by the brush core, such materials are readily transported by the rotating brush and are prevented from being picked up by the photoconductive member during development.
SUMMARY OF THE INVENTION
The present invention obviates the problems noted above by utilizing a development system including a developer transport adapted for depositing developer material on an imaging surface having an electrostatic latent image thereon, comprising: a housing defining a chamber storing a supply of developer material comprising carrier and toner; a donor member, mounted partially in said chamber and spaced from the imaging surface, for transporting developer on an outer surface thereof to a region opposed from the imaging surface said donor member having a magnetic assembly having a plurality of poles, a sleeve, enclosing said magnetic assembly, rotating about said magnetic assembly; said magnetic assembly generating a developer bed having a predefined developer bed height; a grid, interposed between said donor member and the imaging surface within said predefined developer bed height, said grid having apertures for permitting carrier and toner therethrough; and means for biasing a region between said grid and said imaging surface at a voltage potential so that toner is ejecting towards the imaging sur

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Developer member adapted for depositing developer material... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Developer member adapted for depositing developer material..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Developer member adapted for depositing developer material... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3269864

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.