Determining remaining operating life of fluorescent lamp

Electricity: measuring and testing – Electric lamp or discharge device – Electric lamp

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C324S403000, C324S076110, C340S641000, C315S121000

Reexamination Certificate

active

06538448

ABSTRACT:

BACKGROUND OF THE INVENTION
The invention relates to a method and an arrangement for determining the remaining operating life of a fluorescent lamp comprising cathodes, when the fluorescent lamp is a part of a fluorescent lamp circuit, which in addition to the fluorescent lamp includes a ballast, for example a capacitor and an inductance.
Fluorescent lamp lighting fixtures are generally used on account of a long operating life and good color reproduction properties. The operating life of a fluorescent lamp is mainly determined according to the durability of cathodes, which, in turn, mainly depends on the number of fluorescent lamp ignitions. The fluorescent lamps used chiefly in Europe are hot cathode tubes, in which the cathodes are heated to a high temperature before the lamp is actually switched on.
The cathodes are formed to resemble a resistance wire in order to heat the cathodes in the fluorescent lamps. The cathode surface comprises an active material providing an ionization that is necessary for the operation of the lamp. A filament current is conducted through a cathode resistor that heats the cathodes before the fluorescent lamp is switched on, thus facilitating the beginning of the ionization of the active material in the cathode. The cathodes are preheated by a ballast starter system, in which the current flows through the cathodes and the ballast as well as the starter during preheating. When the cathodes are adequately heated, the starter stops conducting and disconnects the filament circuit. On account of the energy stored in the ballast during the heating of the cathodes, the current starts flowing in the fluorescent lamp and produces UV radiation. The UV radiation produced by a gas breakdown is absorbed into a phosphor layer on the surface of the lamp transforming the energy of the absorbed radiation into visible light.
A choke-capacitor circuit can also be used for igniting or burning fluorescent lamps. In the choke-capacitor circuit a choke and a capacitor form a resonance circuit which is used fairly commonly when fluorescent lamps are used at a high frequency. A stray inductance of a secondary winding in a supply transformer may also function as a choke, in which case a separate choke is not needed.
The operating life of fluorescent lamps depends on the amount of active material on the cathode surface, and when the active material is used up, the fluorescent lamp stops functioning. The ionization on the cathode surface of the fluorescent lamp forms a hot spot at the particular point of the cathode where the ionization occurs and the current is transferred to the gas. The hot spot moves along the cathode as the lamp is used, and on a new lamp is close to the cathode terminal, which is connected to a higher potential. As the active material in the cathodes wears, the hot spot moves along the cathode surface.
A problem with fluorescent lamps is to determine the time for changing the lamps. It is most economical to time the change in such a manner that as little as possible of the operating life of the fluorescent lamps is left unused. Very often fluorescent lamp lighting fixtures are difficult to put in place, which is why all fluorescent lamps located in one place should preferably be changed at the same time. A typical example of such a place is a factory hall, where the floor to ceiling height and the location of the lamps above the machines or equipment impede the change.
In vehicles, an anticipating signal indicating that fluorescent lamps are burnt out makes it easier to plan the service for a vehicle. The aim is to time the vehicle service so that as many as possible of the fluorescent lamps which have almost burnt out can be changed during the service. Selecting the same time for the vehicle service and for the lamp change may reduce the number of vehicle lay days. Examples of such vehicles to be serviced are buses, railway carriages or passenger ships.
It is previously known to anticipate the end of the operating life of a fluorescent lamp by measuring the lamp voltage between the cathodes in the lamp. Patent application EP 0 731 437 A2 presents an arrangement that enables to detect a change in the lamp voltage, before the lamp stops functioning. In accordance with the publication, after detecting the change in the voltage the current supply is cut off, and the lamp slowly dims. A drawback with the equipment according to the reference publication is that the voltage to be measured over the lamp is quite high, in which case the measurement equipment should also be constructed in accordance with corresponding voltage levels. The lamp voltage is highly dependent on filling gas properties, operating temperature and current change when the power supply voltage varies. Due to the facts mentioned above, determining the remaining operating life of the lamp on the basis of measuring the lighting voltage between the cathodes is very unreliable.
It is also previously known to determine the amount of active material in the cathode, on the basis of which the remaining operating life of the fluorescent lamp is concluded. Patent application FI 980 322 describes a method and an arrangement for determining the amount of active material remaining in the cathode by measuring the voltage over the cathodes of the fluorescent lamp. A drawback with the equipment according to reference publication 980 322 is that the variation in tolerance of cathodes in different lamp units affect the measuring accuracy.
BRIEF DESCRIPTION OF THE INVENTION
It is an object of the present invention to provide a method and an arrangement for eliminating or for at least alleviating the above drawbacks and for allowing to determine the possibly remaining operating life of a fluorescent lamp more reliably and using a simpler equipment. This object is achieved with the method of the invention, characterized by determining the remaining operating life of the fluorescent lamp from a phase difference of a voltage applied over at least one cathode in relation to another current or voltage phase in the fluorescent lamp circuit.
The method of the invention is based on the idea that the amount of active material in the cathodes of the fluorescent lamp determining the remaining operating life of the lamp correlates with the phase of the voltage applied over the cathodes.
The invention further relates to an arrangement, characterized by comprising a phase detector for measuring a phase difference of a voltage applied over the cathodes in relation to another current or voltage phase in the fluorescent lamp circuit.
An advantage with the method of the invention is that the absolute values of the currents and voltages need not be known, but the amount of remaining active material in the cathodes can be determined by means of the phase difference, whereby the variations in tolerance of the resistance of the cathodes in different lamp units do not affect the measuring accuracy. The method of the invention also operates reliably and is easy to implement.


REFERENCES:
patent: 4277728 (1981-07-01), Stevens
patent: 5103133 (1992-04-01), Misono
patent: 5424611 (1995-06-01), Moriarty, Jr.
patent: 5606224 (1997-02-01), Hua
patent: 5925986 (1999-07-01), Moisin
patent: 6002214 (1999-12-01), Ribarich
patent: 6177768 (2001-01-01), Kimata et al.
patent: 6243017 (2001-05-01), Kuisma
patent: 0731437 (1996-09-01), None
patent: 0 845 928 (1998-06-01), None
patent: 0936846 (1999-08-01), None
patent: 0 936 846 (1999-08-01), None

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Determining remaining operating life of fluorescent lamp does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Determining remaining operating life of fluorescent lamp, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Determining remaining operating life of fluorescent lamp will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3028039

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.