Determination of plunger location and well performance...

Wells – Processes – With indicating – testing – measuring or locating

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C166S250150, C166S250030, C166S372000, C166S374000, C166S064000, C166S068000, C417S508000, C137S487000, C137S624200

Reexamination Certificate

active

06634426

ABSTRACT:

TECHNICAL FIELD OF THE INVENTION
The present invention pertains in general to the removal of fluid from a wellbore in the earth by the use of a plunger lift system and in particular to the determination of the location of the plunger in the wellbore together with well performance parameters.
BACKGROUND OF THE INVENTION
Plunger lift, the only artificial lift process that requires no assistance from outside energy sources, is ideally suited to a variety of downhole well conditions and applications. Two suppliers of equipment plungers are Weatherford Artificial Lift Systems and Ferguson Beauregard. Plunger lift systems consist of a plunger, often referred to as a piston, two bumper springs, a lubricator to sense and stop the plunger as it arrives at the surface, and a surface controller of which several types are available. Various ancillary and accessory components are used to complement and support various application needs.
In a typical plunger lift operation, the plunger cycles between the lower bumper spring located in the bottom section of the production tubing string and the upper bumper spring located in the surface lubricator on top of the wellhead. As the plunger travels to the surface, it creates a solid interface between the lifted gas below and produced fluid above to maximize lifting energy.
The plunger travels from the bottom of the well to the surface lubricator on the wellhead when the force of the lifting gas energy below the plunger is greater than the liquid load and gas pressure above the plunger. Any gas that bypasses the plunger during the lifting cycle flows up the production tubing and sweeps the area to minimize liquid fallback. The incrementation of the travel cycle is controlled by a surface controller and may be repeated as often as needed.
Plungers, a major component in a plunger lift system, are installed in the tubing string and provide a solid interface between the produced fluid column and lift gas. Weatherford and Ferguson Beauregard have various plunger designs available. Among these are lightweight brush types for low-pressure applications; solid plungers made of 4140 steel are available in different lengths, dependent on bottomhole pressure; plungers with spring-loaded pads that offer enhanced sealing against the tubing during upward travel; and for wells with high paraffin content, plungers with a spiral design. In addition, Weatherford supplies special application plungers for use in coil tubing and highly deviated wells.
Bumpers function as springs in plunger lift systems to absorb the impact of the plunger when it reaches the bottom of the well, and to prevent potential damage to downhole fishing-neck profiles. These subsurface bumpers seat in either a seating nipple, tubing stop or collar stop. Models available include low-cost, freestanding subsurface bumpers for use when a seating device exists in the well, and modular subsurface bumpers that accept several different bottom attachments, such as a hold-down device, cup seal, or standing valve.
Weatherford lubricators are used in plunger lift systems to sense and stop the plunger as it arrives at the surface. They have spring-loaded cushions to absorb the shock and prevent damage to the plunger. Two designs offered by Weatherford are a standard plunger lubricator that incorporates both the flowcross which attached the flowline to the tubing and the needle valve outlet, and a lubricator with the added features of a plunger trap and optional sensor. Both models are available in single or dual outlet configurations.
Various controllers control pneumatic-actuated valves for time-cycled intermittent gas lift, plunger lift, or a combination of both. Several models are offered with features to match the type of control needed for specific applications. Among these are low-cost timers with optional solar panels and rechargeable batteries, high-end controllers that feature input for variable flow time, and self-adjusting automatic time-cycle controllers.
A variety of plunger lift accessories and production enhancement components are available. Magnetic shutoff switches, flow tees, various types of packing elements, collar and tubing stops, standing valves, and seating nipples offer support enhancement to the entire system. Chokes, motor valves, drip pots and regulators, and solar panels complement and assist in maximizing production performance.
A plunger-lift system is a low-cost, efficient method of increasing and optimizing production in oil and gas wells, which have marginal flow characteristics.
Functionally, the plunger provides a mechanical interface between the produced liquids and gas. Using the well's own energy for lift, liquids are pushed to the surface by the movement of a free-travelling piston (plunger) traveling from the bottom of the well to the surface. This mechanical interface eliminates liquid fallback, thus boosting the well's lifting efficiency. In turn, the reaction of average flowing bottom hole pressure increases inflow.
Plunger travel is normally provided by formation gas stored in the casing annulus during a shut-in period. As the well is opened and the tubing pressure allowed to decrease, the stored casing gas moves around the end of the tubing and pushes the plunger to the surface. This intermittent operation is normally repeated several times per day. Plunger-lift is especially appropriate in these four applications:
Gas Wells—eliminates liquid loading. As production velocity drops, wells tend to be less efficient in carrying their own liquids to the surface. The introduction of a plunger in this type well reestablishes the original production decline curve, increasing the economic life of the well. At the same time, it generally reduced the volume of injection gas required.
High Ratio Oil Wells—Can increase the economic life of this type well. By producing the well in an intermittent fashion, the well's own energy can be used. The need for other, more costly, lifting options can be eliminated.
Intermittent Gas Lift Wells—Most intermittent gas-lift wells suffer from liquid fallback. This fallback tends to increase the average flowing bottom hole pressure, thus reducing production. With the plunger serving as a mechanical interface, liquids cannot fall back, but are all brought to the surface.
Paraffin and Hydrate Control—Most plungers have sealing elements that make contact with the inside walls of the tubing. As the plunger travels from the bottom of a well to the surface, the tubing is kept wiped clean, therefore eliminating the buildup or accumulation of paraffin, hydrates, scale and so forth.
Although automatic controllers are available for controlling the operation of plunger lift systems, namely opening and closing the flow line valve, the operation cannot be optimized unless the position of the plunger is known, particularly with respect to the engagement of the plunger with the fluid in the well and critical well performance parameters are determined.
SUMMARY OF THE INVENTION
One embodiment of the present invention is a method for determining the depth of a plunger positioned in a tubing string which is located in a wellbore. The interior of the tubing string is acoustically monitored to detect sounds produced by the plunger as it passes tubing collar recesses. The number of the sounds are counted as the plunger passes the recesses. A determination of depth of the plunger in the tubing string is calculated as a function of the number of the sounds which have been counted and the length of tubing joints in the tubing string.
A further embodiment is a method for determining the position of a plunger which is positioned in a tubing string that is located in a well bore, with respect to the fluid in the wellbore. The interior of the tubing string is acoustically monitored to produce a monitored signal as the plunger descends through the tubing string. An acoustic amplitude of the signal is determined over a moving period of time and the present valve of the acoustic amplitude is compared with one or more previous values of the acoustic amplitude

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Determination of plunger location and well performance... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Determination of plunger location and well performance..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Determination of plunger location and well performance... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3167743

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.