Data processing: measuring – calibrating – or testing – Measurement system in a specific environment – Earth science
Reexamination Certificate
2000-05-30
2002-05-21
Lefkowitz, Edward (Department: 2862)
Data processing: measuring, calibrating, or testing
Measurement system in a specific environment
Earth science
C702S010000, C324S339000
Reexamination Certificate
active
06393364
ABSTRACT:
BACKGROUND
1. Field of the Invention
The present invention generally relates to the measurement of electrical characteristics of formations surrounding a wellbore. More particularly, the present invention relates to a method for determining horizontal and vertical resistivities in anisotropic formations while accounting for the dip and stike angle of the formation.
2. Description of the Related Art
The basic principles and techniques for electromagnetic logging for earth formations are well known. Induction logging to determine the resistivity (or its inverse, conductivity) of earth formations adjacent a borehole, for example, has long been a standard and important technique in the search for and recovery of subterranean petroleum deposits. In brief, the measurements are made by inducing eddy currents to flow in the formations in response to an AC transmitter signal, and then measuring the appropriate characteristics of a receiver signal generated by the formation eddy currents. The formation properties identified by these signals are then recorded in a log at the surface as a function of the depth of the tool in the borehole.
It is well known that subterranean formations surrounding an earth borehole may be anisotropic with regard to the conduction of electrical currents. The phenomenon of electrical anisotropy is generally a consequence of either microscopic or macroscopic geometry, or a combination thereof, as follows.
In many sedimentary strata, electrical current flows more easily in a direction parallel to the bedding planes, as opposed to a direction perpendicular to the bedding planes. One reason is that a great number of mineral crystals possess a flat or elongated shape (e.g., mica or kaolin). At the time they were laid down, they naturally took on an orientation parallel to the plane of sedimentation. The interstices in the formations are, therefore, generally parallel to the bedding plane, and the current is able to easily travel along these interstices which often contain electrically conductive mineralized water. Such electrical anisotropy, sometimes called microscopic anisotropy, is observed mostly in shales.
Subterranean formation are often made up of a series of relatively thin beds having different lithological characteristics and, therefore different resistivities. In well logging systems, the distances between the electrodes or antennas are great enough that the volume involved in a measurement may include several such thin beds. When individual layers are neither delineated nor resolved by a logging tool, the tool responds to the formation as if it were a macroscopically anisotropic formation. A thinly laminated sand/shale sequence is a particularly important example of a macroscopically anisotropic formation.
If a sample is cut from a subterranean formation, the resistivity of the sample measured with current flowing parallel to the bedding planes is called the transverse or horizontal resistivity &rgr;
H
. The inverse of &rgr;
H
is the horizontal conductivity &sgr;
H
. The resistivity of the sample measured with a current flowing perpendicular to the bedding plane is called the longitudinal or vertical resistivity, &rgr;
V
, and its inverse the vertical conductivity &sgr;
V
. The anisotropy coefficient &lgr; is defined as: &lgr;={square root over (&sgr;
h
+L /&sgr;
v
+L )}.
In situations where the borehole intersects the formation substantially perpendicular to the bedding planes, conventional induction and propagation well logging tools are sensitive almost exclusively to the horizontal component of the formation resistivity. When the borehole intersects the bedding planes at an angle (a deviated borehole) the tool readings contain an influence from the vertical and horizontal resistivities. This is particularly true when the angle between the borehole and the normal to the bedding places is large, such as in directional or horizontal drilling, where angles near 90° are commonly encountered. In these situations, the influence of vertical resistivity can cause discrepancies between measurements taken in the same formation in nearby vertical wells, thereby preventing a useful comparison of these measurements. In addition, since reservoir evaluation is typically based on data obtained from vertical wells, the use of data from wells drilled at high angles may produce erroneous estimates of formation reserve, producibility, etc. if proper account is not taken of the anisotropy effect.
There have been proposed a number of methods to determine vertical and horizontal resistivity near a deviated borehole. Hagiwara (U.S. Pat. No. 5,966,013) disclosed a method of determining certain anisotropic properties of formation using propagation tool without a priori knowledge of the dip angle. In U.S. Pat. No. 5,886,526, Wu described a method of determining anisotropic properties of anisotropic earth formations using multi-spacing induction tool with assumed functional dependence between dielectric constants of the formation and its horizontal and vertical resistivity. Gupta et al. (U.S. Pat. No. 5,999,883) utilized a triad induction tool to arrive at an approximate initial guesses for the anisotropic formation parameters. Moran and Gianzero (Geophysics, Vol. 44, P. 1266, 1979) proposed using a tri-axial tool of zero spacing to determine dip angle. Later the spacing was extended to finite size by Gianzero et al. (U.S. Pat. No. 5,115,198) using a pulsed induction tool. The above references are hereby incorporated herein by reference.
These attempts to determine vertical and horizontal resistivity around a deviated borehole have thus far not provided sufficient accuracy for formations having a high degree of anisotropy. A new technique is therefore needed.
SUMMARY OF THE INVENTION
The above-described problems are in large part addressed by an iterative method for determining electrical conductivity in an anisotropic dipping formation. The iterative method corrects for the skin effect to high orders while determining all relevant formation parameters. This method may be applied to a tri-axial induction sonde operating in continuous wave (CW) mode. In one embodiment, the method includes (1) measuring a magnetic coupling between transmitter coils and receiver coils of a tool in a borehole traversing the formation; (2) obtaining from the measured coupling a strike angle between the tool and the formation; (3) obtaining from the measured coupling an initial dip angle between the tool and the formation; (4) obtaining from the measured coupling an initial anisotropic factor of the formation; (5) obtaining from the measured coupling an initial horizontal conductivity of the formation; (6) determining an iterative anisotropic factor from the measured coupling, the strike angle, the latest dip angle, and the latest anistropic factor; (7) determining an iterative horizontal conductivity from the measured coupling, the strike angle, the latest iterative anisotropic factor, and the latest dip angle; and (8) determining an iterative dip angle from the measured coupling, the latest iterative anisotropic factor, and the latest iterative horizontal conductivity. The steps of determining an iterative anisotropic factor, determining an iterative horizontal conductivity, and determining an iterative dip angle are preferably repeated a number of times that minimizes an overall residual error.
The disclosed method may provide the following advantages in determining the formation parameters of anisotropic earth formations: (1) a priori knowledge of the dip angle is unnecessary and can be one of the outputs of the method; (2) no assumed relationship between formation resistivity and dielectric constant is necessary; (3) complex electronics for pulsing the transmitter coils may be eliminated since this method is applicable to a triad induction sonde running in CW mode; (4) preliminary results indicate that the disclosed method yields more accurate estimates of all electrically relevant formation parameters in the earth formation.
REFERENCES:
patent: 5115198 (1992-05-01), Gianezero et al.
Gao Li
Gianzero Stanley C.
Conley & Rose & Tayon P.C.
Halliburton Energy Service,s Inc.
Lefkowitz Edward
Zaveri Sobhash
LandOfFree
Determination of conductivity in anisotropic dipping... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Determination of conductivity in anisotropic dipping..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Determination of conductivity in anisotropic dipping... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2847561