Determination and control of vehicle sideslip using GPS

Data processing: vehicles – navigation – and relative location – Navigation – Employing position determining equipment

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C701S036000, C280S005500

Reexamination Certificate

active

06681180

ABSTRACT:

FIELD OF INVENTION
This invention relates to measuring and controlling vehicle sideslip by using the global positioning system (GPS), and more particularly to deriving the sideslip angle of a vehicle and other parameters based on GPS measurements.
BACKGROUND
It is well known that information about certain states of vehicle motion can be used to control the operation of the vehicle. These vehicle states typically include wheel slip, body sideslip angle, and tire sideslip angle. Theoretically, knowledge of the instantaneous values of these three vehicle states could be used by appropriate vehicle stability control systems, e.g., acceleration, steering direction or wheel brakes to correct dangerous states or avoid them. Considerations of stability control systems requiring wheel slip and body sideslip angle are well known and are discussed in many references including, for example, S. Kimbrough, “Coordinated Braking and Steering Control for Emergency Stops and Accelerations”, Proceedings of the WAM ASME, Atlanta, Ga. 1991, pp. 229-244. The challenge, however, resides in deploying appropriate sensors for accurately measuring vehicle parameters and deriving from these measurements the vehicle states for stability control purposes.
The prior art teaches the use of dedicated (and frequently costly) on-board sensors for measuring a number of parameters. For example, wheel speed sensors are commonly used to measure wheel speed. Many prior art systems teach to estimate some of the vehicle states, e.g., tire slip, by comparing values from wheel speed sensors to an estimate of the vehicle velocity (which is oftentimes computed from the four wheel speeds). However, under high slip circumstances, where stability control systems are most often required, this estimate of vehicle speed becomes less accurate. In addition, many stability control systems must integrate noisy and biased on-board sensors in order to obtain slip angle estimates for tire and body slip. Other systems utilize non-linear observers to estimate the slip angel from a yaw rate measurement. In all of these cases, the error associated with estimation places severe constraints on the control algorithm employed. Other methods for estimating vehicle sideslip angle include vision or a vehicle speed-measuring unit.
The global positioning system (GPS) promises to deliver some of these critical values and eliminate the reliance of on-board sensors. GPS provides the ability to determine a body's position anywhere on the surface of the globe. Atmospheric conditions, injected noise called Selective Availability (SA), and other random noise corrupts the positioning accuracy. However, differential corrections, known as differential GPS (DGPS), can eliminate most of these errors and the Doppler shift in the carrier-phase ranging signal provides good velocity values without any differential corrections. Additionally, a four antennae carrier-phase GPS unit can be used to provide 0.1° attitude measurements in roll, pitch and yaw and accurate attitude rate of change measurements without a correction reference station, as described by C. E. Cohen et al., “Flight Tests of Attitude Determination Using GPS Compared Against as Inertial Navigation Unit”, Navigation: Journal of the Institute of Navigation, Vol. 41, No. 1, Spring 1994 and P. Y. Montgomery et al., “Analysis of Angular Velocity Determination Using GPS”, Proceedings of ION GPS 1994, Salt Lake City, Utah, 1994.
The prior art teaches to equip vehicles with GPS receivers to obtain vehicle position measurements. For example, a ground based GPS and one carried by a moving vehicle can be used for measuring its precise position. This approach is described in U.S. Pat. No. 5,572,218 to Cohen et al., who use it to obtain precise locations of airplanes rather than vehicles.
Measurements obtained from GPS receivers have already been used on numerous occasions to determine the velocity of a vehicle and use this measurement in vehicle control systems. For example, in U.S. Pat. No. 6,152,546 Daigle recognizes that provision of a wheel slip and slide correction system in which the monitored or triggered variable is different from the control variable can be used to control trains. Daigle's wheel slip and slide system requires knowledge of train velocity to correct the motion of the train, e.g., the system can implement a torque reduction if the actual wheel velocity varies from the computed velocity. Daigle teaches that the speed of the train can be obtained, among other, from a measurement performed by a GPS sensor.
U.S. Pat. Nos. 5,755,291 and 5,911,769 to Orbach et al. teach a system for regulating wheel slippage of a vehicle carrying or trailing an implement. Their system includes sensors for sensing the vehicle's apparent speed and ground speed and an input device. Orbach et al. indicate that GPS can be used to obtain sequential position signals of the vehicle and determine from them the true ground speed. Specifically, ground speed is equal to the change between sequential positions of the vehicle divided by elapsed time. The system also includes a control circuit configured to generate a slip signal that can be used to control the implement.
The use of GPS for gathering position and motion data for a large number of vehicles and use of such data for traffic monitoring and management have also been considered. For example, GPS has proven effective when implemented on vehicles for land navigation as described by E. Abbot et al., “Land-Vehicle Navigation Using GPS”, Proceedings of the IEEE, January 1999, Vol. 87, No. 1, pp. 145-162 as well as for lanekeeping as described by V. Morellas et al., “Preview Based Control of a Tractor Trailer Using DPGS for Road Departure Accidents”, Proceedings of the IEEE Conference on Intelligent Transportation Systems, Boston, Mass., November 1997.
Pursuing a similar vein, U.S. Pat. Nos. 5,983,161 and 6,275,773 issued to Lemelson et al. teach a GPS based vehicle collision avoidance and warning system. The system uses GPS satellite ranging signals and pseudolite carrier phase ambiguity resolution signal from a fixed earth based station to continuously determine a kinematic tracking position of vehicles on a pathway with centimeter accuracy. The GPS-based position is communicated with other status information among a plurality of vehicles and control centers. The data are processed and analyzed in neural networks in one vehicle to identify, rank and evaluate collision hazards.
The GPS measurements disclosed by Lemelson et al. include determination of vehicle attitude with the aid of multiple GPS antennae placed on the extremities of the vehicle. A comparison of phase differences in signals received simultaneously from the GPS antennae is used to determine the attitude of the vehicle relative to a reference plane in space or on the ground, or relative to a predetermined direction over the earth's surface. Lemelson et al. use separate fuzzy logic control inference rules to sense unusual vehicle attitude, e.g., with respect to the North, and generate attitude compensated collision warning information. Further information about various differential GPS techniques and studies of GPS antennae are discussed in U.S. Pat. Nos. 4,384,293; 4,418,358; 4,599,620; 4,644,358; 4,719,469; 4,870,422; 4,963,889; 4,994,812; 5,101,356; 5,177,489; 5,185,610; 5,296,861; 5,347,286 and 5,406,489. The prior art also teaches the use of GPS systems to provide aircraft heading information as described by R. P. Kornfeld et al., “Single Antenna GPS Based Aircraft Attitude Determination”, Proceedings of the ION Technical Meeting, Long Beach, Calif., January 1998 and D. Gebre-Egziabher et al., “A Low-Cost GPS/Inertial Attitude Heading Reference System (AHRS) for General Aviation Application”, Proceedings of the 1998 IEEE Position Location and Navigation Symposium, April 1998, pp. 518-525.
In an attempt to use GPS to derive more accurate measurements and exercise more control over a vehicle U.S. Pat. No. 6,052,647 to Parkinson et al. teaches a method and system for automatic contr

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Determination and control of vehicle sideslip using GPS does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Determination and control of vehicle sideslip using GPS, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Determination and control of vehicle sideslip using GPS will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3205802

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.