Optics: measuring and testing – With plural diverse test or art
Reexamination Certificate
1998-07-17
2003-08-19
Smith, Zandra U (Department: 2877)
Optics: measuring and testing
With plural diverse test or art
C356S436000, C356S440000, C422S082080
Reexamination Certificate
active
06608671
ABSTRACT:
FIELD OF THE INVENTION
The present invention generally relates to devices and methods for rapidly identifying chemicals with biological activity in liquid samples, particularly automated screening of low volume samples for new medicines, agrochemicals, or cosmetics.
BACKGROUND
Drug discovery is a highly time dependent and critical process in which significant improvements in methodology can dramatically improve the pace at which a useful chemical becomes a validated lead, and ultimately forms the basis for the development of a drug. In many cases the eventual value of a useful drug is set by the timing of its arrival into the market place, and the length of time the drug enjoys as an exclusive treatment for a specific ailment.
A major challenge for major pharmaceutical companies is to improve the speed and efficiency of this process while at the same time maintaining costs to an absolute minimum. One solution to this problem has been to develop high throughput screening systems that enable the rapid analysis of many thousands of chemical compounds per 24 hours. To reduce the otherwise prohibitive costs of screening such large numbers of compounds, typically these systems use miniaturized assay systems that dramatically reduce reagent costs, and improve productivity. To efficiently handle large numbers of miniaturized assays it is necessary to implement automatic robotically controlled analysis systems that can provide reliable reagent addition and manipulations. Preferably these systems and the invention herein are capable of interacting in a coordinated fashion with other systems sub-components, such as the central compound store to enable rapid and efficient processing of samples.
Miniaturized high throughput screening systems require robust, reliable and reproducible methods of analysis that are sensitive enough to work with small sample sizes. While there are a large number of potential analysis methods that can successfully used in macroscopic analysis, many of these procedures are not easily miniaturizable, or lack sufficient sensitivity when miniaturized. This is typically true because absolute signal intensity from a given sample decreases as a function of the size of the sample, whereas background optical or detector noise remains more or less constant for large or small samples. Preferred assays for miniaturized high throughput screening assays have a high signal to noise ratios at very low sample sizes.
Fluorescence based measurements have high sensitivity and perform well with small samples, where factors such as inner filtering of excitation and emission light are reduced. Fluorescence therefore exhibit good signal to noise ratios even with small sample sizes. A particularly preferred method of using fluorescence based signal detection is to generate a fluorescent (emission) signal that simultaneously changes at two or more wavelengths. A ratio can be calculated based on the emission light intensity at the first wavelength divided by the emitted light intensity at a second wavelength. This use of this ratio to measure a fluorescent assay has several important advantages over other non-ratiometric types of analysis. Firstly the ratio is largely independent on the actual concentration of the fluorescent dye that is emitting fluorescence. Secondly the ratio is largely independent on the intensity of light with which the fluorescent compound is being excited. Thirdly the ratio is largely independent of changes in the sensitivity of the detector, provided that is that these changes are the same for the detection efficiency at both wavelengths. This combination of advantages make fluorescence based ratiometric assays highly attractive for high throughput screening systems, where day to day, and, assay to assay reproducibility are important.
Fluorescence assays that produce ratiometric emission readouts have gained in popularity as the advantages of the method have grown in acceptance. Changes in emission ratios at two more wavelengths can be created through a number of distinct mechanisms including electronic and conformational changes in a fluorescence compound. Typically, these changes can occur in response to a chemical reaction or binding of the fluorescent compound to a particular ion such as a metal ion like calcium or magnesium, or through a change in pH that influences the protonation state of the fluorescent compound.
Alternatively ratiometric changes in emission can be conveniently be obtained by exploiting the use of fluorescence resonance energy transfer (FRET) from one fluorescent species to another fluorescent species. This approach is predictable, sensitive and can give rise to large ratio changes at two well-defined and well spectrally resolved wavelengths. Furthermore FRET can be generally applied to create ratiometric assays for a range of activities. For example patent WO 96/30540 (Tsien) describes a FRET based system to measure gene expression using a fluorogenic substrate of beta lactamase. Patent WO 96/41166 (Tsien) describes the use of a FRET based system to measure voltage across the plasma membrane of a cell. Patent WO 97/20261 (Tsien) describes the use of FRET between two fluorescent proteins to measure intracellular protein. Such assays can be used with the inventions described herein.
The present invention is directed towards the development of improved optical systems for simultaneously measuring emission ratios from a plurality of samples with high sensitivity, speed, reproducibility and accuracy. The present invention has several important advantages over prior devices adapted to measure fluorescence emission sequentially from samples.
Firstly, the simultaneous measurement of emission ratios enables rapid fluctuations in lamp intensity, bleaching of the fluorescent dye, or cycle to cycle errors in the alignment of multiwell plates to be corrected for, thereby enabling much smaller changes in ratio to be reliably observed. Secondly, no mechanical movements are necessary during ratio measurement, eliminating mechanical design challenges. Thirdly ratios can be acquired very rapidly, as required for dynamic measurements of membrane potential or calcium, and are not limited by the speed of filter changing. Fourthly the overall throughput and duty cycle are improved by eliminating dead times for filter changeover. Finally, residual ratio non-uniformities between addressable wells should be constant and easily correctable by using emission ratios previously measured on reference samples to normalize sample ratios in software.
SUMMARY OF THE INVENTION
The invention includes a method of simultaneously measuring at least two optical properties of emitted light from at least one sample in a plurality of addressable wells of a multiwell plate comprising the steps of,
i) aligning a plurality of addressable wells of a multiwell plate to a plurality of ball lenses;
ii) directing electromagnetic radiation substantially coaxially through the symmetry axis of each of said plurality of ball lenses,
iii) detecting the emitted light focused by said plurality of ball lenses from said at least one sample.
The invention includes an optical detection system, comprising a light source that launches at least one predetermined wavelength of light, sample holder, a ball lens at a predetermined interrogation distance from said sample holder, a trifurcated fiber adapted for dual optical interrogation and in optical communication with said ball lens, and a detector that detects light of at least one desired wavelength and in optical communication with said ball lens. Typically, the optical detection system includes a trifurcated fiber comprising a first plurality of emission bundles for receiving light of a first wavelength and second plurality of emission bundles for receiving light of a second wavelength and said first plurality of emission bundles and said light source launches at least one predetermined wavelength of excitation light at said sample holder. The optical detection system may further comprise at least one positioner to controllably change the spatial re
Coassin Peter J.
Harootunian Alec Tate
Pham Andrew A.
Tsien Roger Y.
Vuong Minh
Gray Cary Ware & Freidenrich LLP
Smith Zandra U
Vertex Pharmaceuticals (San Diego) LLC
LandOfFree
Detector and screening device for ion channels does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Detector and screening device for ion channels, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Detector and screening device for ion channels will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3123196