Detection of obstacles in surveillance systems using...

Radiant energy – Invisible radiant energy responsive electric signalling – Infrared responsive

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C250S332000, C250S334000, C250S347000

Reexamination Certificate

active

06744049

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention generally relates to a passive infrared detectors (PIR) detectors utilising the pyroelectric effect are widely used to detect changes in the temperature of a scene, and thereby to detect fire, intruders or other dynamic events. When the infrared detectors are formed into an array on to which a scene is focused, the events can not only be detected but also located in direction. If the image is not chopped, only dynamic events can be detected and stationary objects are ignored. One difficulty in operation of an “unchopped” array occurs when an object such as a van is moved into the field of view and left stationary, preventing the detection of events that occur behind it. The introduction of the object may occur when the detector system is not monitored, e.g. during working hours at a factory, and thus is not detected at the time. Alternatively the movement may occur while the system is monitored and so is detected as an event, but checks run to ensure that the event is one that indicates an alarm condition are negative. For example the output from an affected element may be examined for low frequency flicker characteristic of a flame, and if this is absent no alarm would be given. However fires that arise or are started subsequently, behind the obscuring object, would also not be detected until they had spread into other parts of the field. It is the prime object of this invention to provide a reference image of the scene in its normal condition so that certain changes in the scene subsequently can be detected as a fault condition in the operation of the system.
2. Description of the Related Art
SUMMARY OF THE INVENTION
The present invention generally provides a method of operating a pyroelectric array comprising a two dimensional array of detector elements onto which the image of a scene is focussed by optical means, whereby events within the scene cause temperature changes at the detector elements to produce electrical signals, wherein during normal operation the image is stationary with respect to the scene and only events within the scene cause the elements to produce electrical signals and wherein the image of the scene is displaced with respect to the array to generate a set of detector element signals corresponding to a reference image indicating the position of static objects in the scene.
The method of the invention should not be confused with the displacement of an image with respect to a detector element which occurs in a typical scanning camera. For example, JP-A-7050825 discloses a typical “line scan” camera including a linear array of detector elements in which successive parts of an image of a scene are reflected onto the detector elements by means of a moving mirror in order for the detector elements to build up a two dimensional image of the scene. With a two dimensional array of elements such scanning is not necessary since an optical image of the whole scene can be focussed onto the array. The purpose of displacing the image with respect to the array in the present invention is to cause a change in the amount of infrared radiation reaching passive elements which would not otherwise output a detection signal.
Furthermore, it should be noted that if an image is scanned across a passive infrared detector, that detector will be able to detect the positions of static objects as well as moving objects. Comparison with subsequent scans will enable moving objects to be distinguished from static objects. By contrast, in the present invention, the displacement of the image with respect to the object is not necessary during normal operation to detect moving objects.
The method of the invention is preferably carried out when the scene is known to be clear of unwanted objects. The scene in which it is required to detect events may be focussed by a lens or mirror on to the array of infrared devices which may operate in the whole or a part of the range 2-14 micrometers. The array is formed of pyroelectric detectors that detect the changes of temperature due to an event rather than the actual temperature of the elements of the scene. Suitable detector arrays will usually be rectangular and contain between eight and a hundred detectors in each dimension, corresponding in a square detector array to between sixty-four and ten thousand elements.
Subsequently if an object is introduced to the scene, the signals will be different at the edges of the object and probably within it. Thus, in order to detect the relocation, removal or introduction of static objects within the scene, a further set of detector element signals is generated by again displacing the image of the scene with respect to the array, and the resulting set of signals is compared with the signals corresponding to the reference image. This may be done at regular intervals and particularly, in the case of an array forming part of a monitoring system, when the monitoring system has just commenced operation after a period of not operating.
It should be noted that the method does not require the generation of a visible image. The detection of movement of objects can be carried out entirely by suitable signal processing. A comparison of sets of signals e.g. by subtraction of the signals from each element using a microprocessor or other electronic processor, will detect whether an obstacle has been moved into the scene under surveillance and what portion of the scene it occupies.
During normal operation (ie. no displacement) the array may be operated to detect dynamic events such as the presence of intruders, occurrence of fire or movement of people. In one possible application the array may monitor people approaching a pedestrian crossing, for example. Movements of previously static objects or introduction of objects which are then static may then be interpreted as a potential fault in the monitoring of dynamic events. In one example the object may be a parked vehicle blocking the line of vision. If desired, objects below a certain size, such as might correspond to moving the furniture in a room or the introduction of a parked cycle, can be ignored.
The occurrence of a possibly significant dynamic event would typically be indicated by an above threshold signal from an element of the array. The significance of the event may be further verified by other procedures. The displacement will typically be a vibration which will move the image of the scene a short distance to and from across the detector. Either the array or part of the optical means may be vibrated. A movement such that the image of the scene is displaced by an amount equal to the detector element pitch is sufficient. The movement may be accomplished by vibrating the array with a suitable transducer, though piezoelectric signals from the array may make this not the preferred solution. In a usually preferred embodiment a lens or mirror in the optical system is vibrated by a piezoelectric or electromagnetic transducer. In this arrangement an optical lever may be introduced to make the movement of the image larger than the movement of the transducer. In a further embodiment the movement of the image is accomplished by passing the infrared radiation through a thin prism which can be rotated about an axis at right angles to a face. The temperature changes in the array, corresponding to the movement of the image of the scene across it, produce signals corresponding to the temperature gradient in the relevant part of the scene and thus emphasise edges of objects. As most obstacles are defined by vertical or horizontal edges a preferred axis of vibration is at 45° to the horizontal so that both horizontal and vertical edges may be detected. Alternatively two transducers may be applied to diameters of the optical element at right angles to one another and with vibrations 90° out of phase so that the image is swept round in a small circle across the array. Other methods of accomplishing the displacement could include moving wedge shaped prisms laterally into and out of the field of view of the ar

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Detection of obstacles in surveillance systems using... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Detection of obstacles in surveillance systems using..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Detection of obstacles in surveillance systems using... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3353179

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.