Chemistry: molecular biology and microbiology – Measuring or testing process involving enzymes or... – Involving nucleic acid
Patent
1997-09-09
1999-03-30
Arthur, Lisa B.
Chemistry: molecular biology and microbiology
Measuring or testing process involving enzymes or...
Involving nucleic acid
536 243, 536 2431, 536 2432, 536 2433, C12Q 168, C07H 2104
Patent
active
058887393
ABSTRACT:
G-quartet structures have been found to be useful in fluorescence assays to detect a selected nucleic acid sequence. When oligonucleotides containing these structures are labeled with a donor fluorophore and an acceptor dye, the folding or interaction of the oligonucleotides in the G-quartet structure brings the donor-acceptor pair into close proximity, allowing an interaction between the two labels which results in quenching of donor fluorescence or a change in other fluorescence properties which are the result of the interaction of two dyes in close proximity. The G-quartet structure unfolds or is otherwise disrupted upon hybridization to its complementary sequence, increasing the distance between the two dye labels. This results in decreased donor quenching or a change in another proximity-related fluorescence parameter. The associated increase in donor fluorescence intensity or the change in another fluorescence parameter may be monitored as an indication of the presence of a selected nucleic acid sequence. Alternatively, in some cases a decrease in acceptor fluorescence may be monitored as an indication of the presence of the selected nucleic acid sequence when the acceptor is also a fluorophore. Related structures, such as the i-tetraplex, may also be useful in similar methods for detection of a selected nucleic acid sequence.
REFERENCES:
patent: 4996143 (1991-02-01), Heller et al.
patent: 5691145 (1997-11-01), Pitner et al.
L. E. Morrison and L. M. Stols "Sensitive Fluorescence-Based Thermodynamic and Kinetic Measurements of DNA Hybridization in Solution" Biochem. 32:3095-3104 (1993).
K. M. Parkhurst and L. J. Parkhurst "Kinetic Studies by Fluorescence Resonance Energy Transfer Employing a Double-Labeled Olifonucleotide: Hybridization to the Oligonucleotide Complement and to Single-stranded DNA" Biochem. 34:285-292 (1995).
J. P. Cooper and P. J. Hagerman "Analysis of Fluorescence Energy Transfer in Duplex and Branched DNA Molecules" Biochem. 29:9261-9268 (1990).
L. B. McGown, et al. "The Nucleic Acid Ligand--A new Tool for Molecular Recognition" Anal. Chem. Nov. 1, 1995. pp. 663A-668A.
M. F. Kubik, et al. "High-affinity RNA ligands to human .alpha.-thrombin" Nucl. Acids Res. 22:2619-2626 (1994).
W. Bannwarth, et al. "Energy Transfer within Oligonucleotides froma Lumazine (=Pteridine-2,4(1H,3H)-dione) Chromophore to Bathophenanthroline-ruthenium(II) Complexes" Helv. Chim. Acta 74:1991-1999 (1991).
J-L. Mergny, et al. "Fluorescence Engergy Transfer between Two Triple Helix-Forming Oligonucleotides Bound to Duplex DNA" Biochem. 33:15321-15328 (1994).
R. A. Cardullo, et al. "Detection of nucleic acid hybridization by nonradiative fluorescence resonance energy transfer" Proc. Natl. Acad. Sci. USA 85:8790-8794 (1988).
E. Dias, et al. "Chemical Probe for Glycosidic Conformation in Telomeric DNAs" J. Am. Chem. Soc. 116:4479-4480 (1994).
K. Y. Wang, et al. "A DNA Aptamer Which Binds to and Inhibits Thrombin Exhibits a New Structural Motif for DNA" Biochem. 32:1899-1904 (1993).
R. F. Macaya, et al. "Thrombin-binding DNA aptamer forms a unimolecular quadruplex structure in solution" Proc. Natl. Acad. Sci. USA 90:3745-3749 (1993).
P. Schultze, et al. "Three-dimensional Solution Structure of the Thrombi-binding DNA Aptamer d(GGTTGGTGTGGTTGG)" J. Mol. Biol. 235:1532-1547 (1994).
J. A. Kelly, et al. "Reconciliation of the X-ray and NMR Structures of the Thrombin-Binding Aptamer d(GGTTGGTGTGGTTGG)" J. Mol. Biol. 256:417-422 (1996).
L. C. Bock, et al. "Selection of single-stranded DNA molecules that bind and inhibit human thrombin" Nature 355:564-566 (1992).
Y. Wang and D. J. Patel "Solution structure of the human telomeric repeat (1993).
D. Rhodes and R. Giraldo "Telomere structure and function" Curr. Opin. Struct. Biol. 5:311-322 (1995).
Nadeau James G.
Pitner J. Bruce
Vonk Glenn P.
Arthur Lisa B.
Becton Dickinson and Company
Fugit Donna R.
LandOfFree
Detection of nucleic acids using G-quartets and I-tetraplexes does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Detection of nucleic acids using G-quartets and I-tetraplexes, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Detection of nucleic acids using G-quartets and I-tetraplexes will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-1213495