Drug – bio-affecting and body treating compositions – In vivo diagnosis or in vivo testing
Reexamination Certificate
2000-12-22
2003-07-22
Huff, Sheela (Department: 1642)
Drug, bio-affecting and body treating compositions
In vivo diagnosis or in vivo testing
C424S009600
Reexamination Certificate
active
06596257
ABSTRACT:
FIELD OF INVENTION
The present invention relates to bioluminescence generating agents, conjugates containing such agents linked to targeting agents, and methods of use of the conjugates for visualization neoplastic or specialty tissue during invasive and non-invasive surgical procedures.
BACKGROUND OF THE INVENTION
Luminescence is a phenomenon in which energy is specifically channeled to a molecule to produce an excited state. Return to a lower energy state is accompanied by release of a photon (hv). Luminescence includes fluorescence, phosphorescence, chemiluminescence and bioluminescence. Bioluminescence is the process by which living organisms emit light that is visible to other organisms. Luminescence may be represented as follows:
A+B→X*+Y
X*→X+hv,
where X* is an electronically excited molecule and hv represents light emission upon return of X* to a lower energy state. Where the luminescence is bioluminescence, creation of the excited state derives from an enzyme catalyzed reaction. The color of the emitted light in a bioluminescent (or chemiluminescent or other luminescent) reaction is characteristic of the excited molecule, and is independent from its source of excitation and temperature.
An essential condition for bioluminescence is the use of molecular oxygen, either bound or free in the presence of a luciferase. Luciferases, are oxygenases, that act on a substrate, luciferin, in the presence of molecular oxygen and transform the substrate to an excited state. Upon return to a lower energy level, energy is released in the form of light [for reviews see, e.g., McElroy et al. (1966) in
Molecular Architecture in Cell Physiology,
Hayashi et al., eds., Prentice-Hall, Inc., Englewood Cliffs, N.J., pp. 63-80; Ward et al., Chapter 7 in
Chemi
-
and Bioluminescence,
Burr, ed., Marcel Dekker, Inc. NY, pp.321-358; Hastings, J. W. in (1995)
Cell Physiology:Source Book,
N. Sperelakis (ed.), Academic Press, pp 665-681;
Luminescence, Narcosis and Life in the Deep Sea,
Johnson, Vantage Press, NY, see, esp. pp. 50-56].
Though rare overall, bioluminescence is more common in marine organisms than in terrestrial organisms. Bioluminescence has developed from as many as thirty evolutionarily distinct origins and, thus, is manifested in a variety of ways so that the biochemical and physiological mechanisms responsible for bioluminescence in different organisms are distinct. Bioluminescent species span many genera and include microscopic organisms, such as bacteria [primarily marine bacteria including Vibrio species], fungi, algae and dinoflagellates, to marine organisms, including arthropods, mollusks, echinoderms, and chordates, and terrestrial organism including annelid worms and insects.
Bioluminescence, as well as other types of chemiluminescence, is used for quantitative determinations of specific substances in biology and medicine. For example, luciferase genes have been cloned and exploited as reporter genes in numerous assays, for many purposes. Since the different luciferase systems have different specific requirements, they may be used to detect and quantify a variety of substances. The majority of commercial bioluminescence applications are based on firefly [
Photinus pyralis
] luciferase. One of the first and still widely used assays involves the use of firefly luciferase to detect the presence of ATP. It is also used to detect and quantify other substrates or co-factors in the reaction. Any reaction that produces or utilizes NAD(H), NADP(H) or long chain aldehyde, either directly or indirectly, can be coupled to the light-emitting reaction of bacterial luciferase.
Another luciferase system that has been used commercially for analytical purposes is the Aequorin system. The purified jellyfish photoprotein, aequorin, is used to detect and quantify intracellular Ca
2+
and its changes under various experimental conditions. The Aequorin photoprotein is relatively small [~20 kDa], nontoxic, and can be injected into cells in quantities adequate to detect calcium over a large concentration range [3×10
−7
to 10
−4
M].
Because of their analytical utility, many luciferases and substrates have been studied and well-characterized and are commercially available [e.g., firefly luciferase is available from Sigma, St. Louis, Mo., and Boehringer Mannheim Biochemicals, Indianapolis, Ind.; recombinantly produced firefly luciferase and other reagents based on this gene or for use with this protein are available from Promega Corporation, Madison, Wis.; the aequorin photoprotein luciferase from jellyfish and luciferase from Renilla are commercially available from Sealite Sciences, Bogart, Ga.; coelenterazine, the naturally-occurring substrate for these luciferases, is available from Molecular Probes, Eugene, Oreg.]. These luciferases and related reagents are used as reagents for diagnostics, quality control, environmental testing and other such analyses.
SURGICAL PROCDURES
One difficulty encountered by surgeons during surgical procedures either for diagnosis or treatment is to find the tissue of interest. For example, during surgeries in which tumors are excised it is difficult to localize the neoplastic tissue and to be sure to remove all of it, yet not remove healthy tissue. It is also difficult to readily detect metastases, and also, for example to locate the embryo in ectopic pregnancies.
For these reasons and others, it is an object herein to provide means for visualizing neoplastic tissue and specialty tissue during surgical procedures. It is also an object herein to provide methods of detecting neoplastic and specialty tissue.
SUMMARY OF THE INVENTION
Diagnostic systems that rely on bioluminescence for visualizing tissues in situ are provided. The systems are particularly useful for visualizing and detecting neoplastic tissue and specialty tissue, such as during non-invasive and invasive procedures. Kits that provide the components of the systems and methods using the systems for visualizing the tissue are also provided. Therapeutic methods in which photosensitizing compounds are administered are also provided.
The systems include compositions containing conjugates that include a tissue specific, particularly a tumor-specific, targeting agent linked to a targeted agent, a luciferase or luciferin. The systems also include a second composition that contains the remaining components of a bioluminescence generating reaction. In some embodiments, all components, except for activators, which are provided in situ or are present in the body or tissue, are included in a single composition.
In particular, the diagnostic systems include two compositions. A first composition that contains conjugates that, in preferred embodiments, include antibodies directed against tumor antigens conjugated to a component of the bioluminescence generating reaction, a luciferase or luciferin, preferably a luciferase are provided. In certain embodiments, conjugates containing tumor-specific targeting agents are linked to luciferases or luciferins. In other embodiments, tumor-specific targeting agents are linked to microcarriers that are coupled with, preferably more than one of the bioluminescence generating components, preferably more than one luciferase molecule.
The second composition contains the remaining components of a bioluminescence generating system, typically the luciferin or luciferase substrate. In some embodiments, these components, particularly the luciferin, are linked to a protein, such as a serum albumin, or other protein carrier. The carrier and time release formulations, permit systemically administered components to travel to the targeted tissue without interaction with blood cell components, such as hemoglobin that deactivate the luciferin or luciferase. Preferred bioluminescence generating systems include the Vargula luciferase/luciferin.
In certain, the bioluminescence generating compositions are packaged in a time release formulation, such as cyclodextran, a liposome or other such v
Huff Sheela
Pietragallo Bosick & Gordon
Prolume Ltd.
Towner, Esq. Alan G.
LandOfFree
Detection and visualization of neoplastic tissues and other... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Detection and visualization of neoplastic tissues and other..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Detection and visualization of neoplastic tissues and other... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3052278