Detection and characterization of microorganisms

Chemistry: molecular biology and microbiology – Measuring or testing process involving enzymes or... – Involving antigen-antibody binding – specific binding protein...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C435S029000, C435S030000, C436S063000, C436S177000

Reexamination Certificate

active

06340570

ABSTRACT:

BACKGROUND OF THE INVENTION
The present invention relates to the field of separating and identifying microorganisms, particularly infectious agents, using two-dimensional centrifugation and exposure to chemical and enzymatic agents, combined with detection in density gradients based on light scatter or fluorescence, counting by fluorescence flow cytometry, and characterization of intact virions, bacteria, proteins and nucleic acids by mass spectrometry, flow cytometry and epifluorescence microscopy.
The publications and other materials used herein to illuminate the background of the invention or provide additional details respecting the practice, are incorporated by reference, and for convenience are respectively grouped in the appended List of References. Patents referenced herein are also incorporated by reference.
In the prior art, diagnosis of viral and bacterial infections has been done by culturing the causal agents in suitable media or in tissue culture to obtain sufficient particles for analysis, followed by identification based on which conditions support growth, on reaction to specific antibodies, or based on nucleic acid hybridization (Gao and Moore, 1996). Biological growth can be omitted when the polymerase chain reaction (PCR) is used to amplify DNA, however, PCR requires sequence-specific primers, and is thus limited to known or suspected agents (Bai et al., 1997). For all these methods, considerable time is required, and the methods are useful for agents whose properties are known or suspected. Existing methods do not provide means for rapidly isolating and characterizing new infectious agents. Hundreds of infectious agents are known, and it is infeasible to have available reagents for an appreciable fraction of them.
Techniques for recovering infectious agents from blood, urine, and tissues have been previously developed based on centrifugation or filtration, but have not been widely used clinically (Anderson et al., 1966; Anderson et al., 1967). The highest resolution methods use rate zonal centrifugation to separate fractions based on sedimentation rate (measured in Svedberg units, S) and isopycnic banding density (measured in grams per mL or &rgr;). S-&rgr; separations have been used to isolate virus particles in a high state of purity from rat liver homogenates, and have been used to isolate the equivalent of approximately 20 virions per cell (Anderson et al., 1966). In these studies, virus particles were detected by light scattering and visualized by electron microscopy. The separations required complex special equipment not generally available, one or more days of effort, and they did not provide a definitive identification of the bacterial or viral species separated.
It is important to show that candidate infectious particles isolated by centrifugal methods actually contain nucleic acids. DNA and RNA in both active and fixed bacterial and viral particles have been stained with fluorescent dyes specific to nucleic acids, and observed and counted by fluorescent microscopy and flow cytometry. Many dyes are now known which exhibit little fluorescence in the free state, but become highly fluorescent when bound to nucleic acids. Some bind differentially to DNA or RNA or to different specific regions, and some show different emission spectra depending on whether bound to DNA or RNA. In this disclosure, dyes referred to are fluorescent dyes. By differential fluorescence spectroscopy ssDNA, dsDNA and RNA may be distinguished. See, Haugland, 1996; Mayor and Diwan, 1961; Mayor, 1961; Hobbie et al., 1977; Zimmerman, 1977; Perter and Feig, 1980; Paul, 1982; Suttle, 1993; Hirons et al., 1994; Hennes and Suttle, 1995; Hennes et al., 1995.
Isolated nucleic acid molecules of the dimensions found in bacteria and viruses have been counted and their mass estimated using fluorescence flow cytometry for molecules in solution, and epifluorescence microscopy of immobilized molecules (Hennes and Suttle, 1995, Goodwin et al., 1993). In both instances, the size of fragments produced by restriction enzymes can be estimated, and the molecules identified by reference to a database listing the sizes of fragments of known DNA molecules produced by different restriction enzymes (Hammond et al., U.S. Pat. No. 5,558,998; Jing et al., 1998).
Using specific fluorescently-labeled antibodies, specific identifications may also be made. These studies are time consuming, and require batteries of specific antibodies, together with epifluorescent microscopy or fluorimeters.
Matrix-Assisted Laser-Desorption-Ionization Time-of-Flight Mass Spectrometry (MALDI-TOF-MS) currently allows precise measurements of the masses of proteins having molecular weights of over 50,000 daltons. Individual virion proteins have been previously studied by mass spectrometry (Siuzdak, 1998); however, resolution of complete sets of viral subunits from clinically relevant preparations of intact viruses, and the demonstration that precise measurements could be made of their individual masses, have not been previously reported. While single protein mass measurements can reliably identify many proteins, when a set of proteins from a virus or bacterial cell are known, detection of such a set provides more definitive identification. Methods are currently also being developed which allow partial sequencing of proteins or enzymatically produced peptide fragments and thus further increase the reliability of identifications. For MALDI-TOF-MS currently used methods require a picomole or more of protein, while electrospray mass spectrometry currently requires 5-10 femtomoles. The detection limits with mass spectrometry, especially MALDI, depend on getting a sample concentrated and on to a very small target area. Sensitivity will increase as ultramicro methods for concentrating and transferring ever smaller-volume samples are developed. See, Claydon et al., 1996; Fenselau, 1994; Krishmanurthy et al., 1996; Loo et al., 1997; Lennon and Walsh, 1997; Shevchenko et al., 1996; Holland et al., 1996; Liang et al., 1996.
Centrifugal methods for concentrating particles from large into small volumes have been in use for decades. Using microbanding centrifuge tubes which have a large cylindrical volume and cross section which tapers gradually in a centrifugal direction down to a small tubular section, particles may be concentrated or banded in a density gradient restricted to the narrow tubular bottom of the tube, or may be pelleted. The basic design of such tubes are well known by those skilled in the arts. See, Tinkler and Challenger, 1917; Cross, 1928; ASTM Committee D-2, 1951; Davis and Outenreath, U.S. Pat. No. 4,624,835; Kimura, U.S. Pat. No. 4,861,477; Levine et al., U.S. Pat. No. 5,342,790; Saunders et al., U.S. Pat. No. 5,422,018; Saunders, U.S. Pat. No. 5,489,396. The original tubes of this type were called Sutherland bulbs and were used to determine the water content of petroleum (The Chemistry of Petroleum and Its Substitutes, 1917, ASTM Tentative Method of Test for Water and Sediment by Means of Centrifuge, ASTM Designation: D 96-50T, 1947). Slight modifications of the basic design are described in U.S. Pat. Nos. 4,106,907; 4,624,835; 4,861,477; 5,422,018, 5,489,396. Such tubes have been made of glass or plastic materials, and the use of water or other fluids to support glass or plastic centrifuge tubes in metal centrifuge shields has long been well known in the art. However, centrifuge tubes disclosed in the prior art which include a shape similar to that of the microbanding centrifuge tubes of the instant invention could not withstand the centrifugal forces required to band viral particles in gradients. Conventional centrifuge tubes, or tubes derivative from the Sutherland design have been used for density gradient separations, and for separations in which wax or plastic barriers are used which position themselves between regions of different density to allow recovery of these fractions without mixing. There has been no previous discussion of barriers which prevent mixing of step gradient components at rest, but which barriers ar

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Detection and characterization of microorganisms does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Detection and characterization of microorganisms, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Detection and characterization of microorganisms will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2856020

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.