Data processing: financial – business practice – management – or co – Automated electrical financial or business practice or... – Operations research or analysis
Reexamination Certificate
1998-07-31
2001-08-21
Hafiz, Tariq R. (Department: 2166)
Data processing: financial, business practice, management, or co
Automated electrical financial or business practice or...
Operations research or analysis
Reexamination Certificate
active
06278977
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Technical Field
The present invention relates to the field of computer systems acting as workflow management systems (WFMS).
2. Prior Art
A new area of technology with increasing importance is the domain of Workflow-Management-Systems (WFMS). WFMS support the modelling and execution of business processes. Business processes control which piece of work of a network of pieces of work will be performed by whom and which resources are exploited for this work, i.e. a business process describes how an enterprise will achieve its business goals. The individual pieces of work might be distributed across a multitude of different computer systems connected by some type of network.
The process of designing, developing and manufacturing a new product and the process of changing or adapting an existing product presents many challenges to product managers and engineers to bring the product to market for the least cost and within schedule while maintaining or even increasing product quality. Many companies are realizing that the conventional product design process is not satisfactory to meet these needs. They require early involvement of manufacturing engineering, cost engineering, logistic planning, procurement, manufacturing, service and support with the design effort. Furthermore, they require planning and control of product data through design, release, and manufacturing.
The correct and efficient execution of business processes within a company, e.g. development or production processes, is of enormous importance for a company and has significant influence on a company's overall success in the market place. Therefore, those processes have to be regarded similar to technology processes and have to be tested, optimized and monitored. The management of such processes is usually performed and supported by a computer based process or workflow management system.
In D. J. Spoon: “Project Management Environment”, IBM Technical Disclosure Bulletin, Vol. 32, No. 9A, Feb. 1990, pages 250 to 254, a process management environment is described including an operating environment, data elements, and application functions and processes.
In R. T. Marshak: “IBM's FlowMark, Object-Oriented Workflow for Mission-Critical Applications”, Workgroup Computing Report (USA), Vol. 17, No. 5, 1994, page 3 to 13, the object character of IBM FlowMark as a client/server product built on a true object model that is targeted for mission-critical production process application development and deployment is described.
In H. A. Inniss and J. H. Sheridan: “Workflow Management Based on an Object-Oriented Paradigm”, IBM Technical Disclosure Bulletin, Vol. 37, No. 3, March 1994, page 185, other aspects of object-oriented modelling on customization and changes are described.
In F. Leymann and D. Roller: “Business Process Management with FlowMark”, Digest of papers, Cat. No. 94CH3414-0, Spring COMPCON 94, 1994, pages 230 to 234, the state-of-the-art computer process management tool IBM FlowMark is described. The meta model of IBM FlowMark is presented as well as the implementation of IBM FlowMark. The possibilities of IBM FlowMark for modelling of business processes as well as their execution are discussed. The product IBM FlowMark is available for different computer platforms and documentation for IBM FlowMark is available in every IBM branch.
In F. Leymann: “A meta model to support the modelling and execution of processes”, Proceedings of the
11
th European Meeting on Cybernetics and System Research EMCR92, Vienna, Austria, April 21 to 24, 1992, World Scientific 1992, pages 287 to 294, a meta model for controlling business processes is presented and discussed in detail.
The “IBM FlowMark for OS/2”, document number GH 19-8215-01, IBM Corporation, 1994, available in every IBM sales office, represents a typical modern, sophisticated, and powerful workflow management system. It supports the modelling of business processes as a network of activities; refer for instance to “Modeling Workflow”, document number SH 19-8241, IBM Corporation, 1996. This network of activities, the process model, is constructed as a directed, acyclic, weighted, colored graph. The nodes of the graph represent the activities or work items which are performed. The edges of the graph, the control connectors, describe the potential sequence of execution of the activities. Definition of the process graph is via the IBM FlowMark Definition Language (FDL) or the built-in graphical editor. The runtime component of the workflow manager interprets the process graph and distributes the execution of activities to the right person at the right place, e.g. by assigning tasks to a work list according to the respective person, wherein said work list is stored as digital data within said workflow or process management computer system.
In F. Leymann and W. Altenhuber: “Managing business processes as an information resource”, IBM Systems Journal, Vol. 32 (2), 1994, the mathematical theory underlying the IBM FlowMark product is described.
In D. Roller: “Verifikation von Workflows in IBM FlowMark”, in J. Becker und G. Vossen (Hrsg.): “Geschaeftsprozessmodellierung und Workflows”, International Thompson Publishing, 1995, the requirement and possibility of the verification of workflows is described. Furthermore the feature of graphical animation for verification of the process logic is presented as it is implemented within the IBM FlowMark product.
For implementing a computer based process management system, firstly the business processes have to be analyzed and, as the result of this analysis, a process model has to be constructed as a network of activities corresponding to the business process. In the IBM FlowMark product, the process models are not transformed into an executable. At run time, an instance of the process is created from the process model, called a process instance. This process instance is then interpreted dynamically by the IBM FlowMark product.
Another area of the technology relates to data mining technology. Data mining technology allows to automatically detect patterns in huge amounts of data. Especially, it is not based on iteratively verifying hypothesises about potential patterns within the data (which is intractable, in general) but it is deriving such patterns based on much more efficient analysis algorithms.
OLAP (OnLine Analytical Processing) tools allow the fast access to large amounts of data, many different representations and aggregations of the same results sets, and the access of data related to already derived results. While this is in theory true for standard relational DBMSs new technologies like multi-dimensional hypercubes or time-series allow this in a very efficient way.
So far no approach has been made to exploit data mining and OLAP technologies for WFMS.
Moreover the various tasks and activities being part of a business process have been developed independently and do not know of their mutual existence. Very often it depends on the knowledge of the users of these pieces of software in which sequence and under which conditions the individual activities have to be executed. One goal of business reengineering is to determine the models of existing business processes. The business processes are quite often only known by the people working on the various pieces of the business processes, i.e. various people have “local knowledge” of the business processes they are working on. Thus often there is no single person in an enterprise who knows the global interdependence and sequence of execution of the individual pieces. Different business reengineering methodologies are used today to capture this local knowledge and to derive the “global model” of the overall business process out of it. But in essence all these approaches actually only help to collect the global business process information and help to represent the information in certain ways. Finally all that information has to be gathered by interviews from the users of these software pieces.
The derivation of process models is typically addressed by
Agrawal Rakesh
Leymann Frank
Roller Dieter
Hafiz Tariq R.
International Business Machines - Corporation
Nguyen Leslie K.
Scully Scott Murphy & Presser
Zarick, Esq. Gail
LandOfFree
Deriving process models for workflow management systems from... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Deriving process models for workflow management systems from..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Deriving process models for workflow management systems from... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2521317