Deriving and running workload manager enclaves from workflows

Data processing: financial – business practice – management – or co – Automated electrical financial or business practice or... – Health care management

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C709S200000, C709S241000

Reexamination Certificate

active

06631354

ABSTRACT:

BACKGROUND OF INVENTION
1. Technical Field
The present invention relates to the area of workload management/performance management. More particularly, the invention relates to a method of providing workload-management in a Workflow-Management-System (WFMS).
2. Prior Art
A new area of technology with increasing importance is the domain of Workflow-Management-Systems (WFMS). WFMS support the modeling and execution of business processes. Business processes control which piece of work of a network of pieces of work will be performed by whom and which resources are to be exploited for this work, i.e. a business process describes how an enterprise will achieve its business goals. The individual pieces of work might be distributed across a multitude of different computer systems connected by some type of network.
The process of designing, developing and manufacturing a new product and the process of changing or adapting an existing product presents many challenges to product managers and engineers to bring the product to market for the least cost and within schedule while maintaining or even increasing product quality. Many companies are realizing that the conventional product design process is not satisfactory to meet these needs. They require early involvement of manufacturing engineering, cost engineering, logistic planning, procurement, manufacturing, service and support with the design effort. Furthermore, they require planning and control of product data through design, release, and manufacturing.
The correct and efficient execution of business processes within a company, e.g. development or production precesses, is of enormous importance for a company and has significant influence on a company's overall success in the market place. Therefore, those processes have to be regarded as similar to technology processes and have to be tested, optimized and monitored. The management of such processes is usually performed and supported by a computer based process or workflow management system.
In D. J. Spoon: “Project Management Environment”, IBM Technical Disclosure Bulletin, Vol. 32, No. 9A, February 1990, pages 250 to 254, a process management environment is described including an operating environment, data elements, and application functions and processes.
In R. T. Marshak: “IBM's FlowMark, Object-Oriented Workflow for Mission-Critical Application”, Workgroup Computing Report (USA), Vol. 17 No. 5, 1994, page 3 to 13, the object character of IBM FlowMark as a client/server product built on a true object model that is targeted for mission-critical production process application development and deployment is described.
In H. A. Inniss and J. H. Sheridan: “Workflow Management Based on an Object-Oriented Paradigm”, IBM Technical Disclosure Bulletin, Vol. 37, No. 3, March 1994, page 185, other aspects of object-oriented modeling on customization and changes are described.
In F. Leymann and D. Roller: “Business Process Management with FlowMark”, Digest of papers, Cat. No. 94CH3414-0, Spring COMPCON 94, 1994, pages 230 to 234, the state-of-the-art computer process management tool IBM FlowMark is described. The meta model of IBM FlowMark is presented as well as the implementation of IBM FlowMark. The possibilities of IBM FlowMark for modeling of a business process as well as their execution are discussed. The product IBM FlowMark is available for different computer platforms and documentation for IBM FlowMark is available in every IBM branch.
In F. Leymann: “A meta model to support the modeling and execution of processes”, Proceedings of the 11
th
European Meeting on Cybernetics and System Research EMCR92, Vienna, Austria, Apr. 21 to 24, 1992, World Scientific 1992, pages 287 to 294, a meta model for controlling business processes is presented and discussed in detail.
The “IBM FlowMark for OS/2”, document number GH 19-8215-01, IBM Corporation, 1994, available in every IBM sales office, represents a typical modern, sophisticated, and powerful workflow management system. It supports the modeling of business processes as a network of activities; refer for instance to “Modeling Workflow”, document number SH 19-8241, IBM Corporation, 1996. As further information on Workflow Management Systems available in IBM sales offices one could mention: IBM MQSeries Concepts and Architecture, document number GH 12-6285; IBM MQSeries Getting Started with Buildtime, document number SH 12-6286; IBM MQSeries Getting Started with Runtime, document number SH 12-6287. This network of activities, the process model, is constructed as a directed, acyclic, weighted, colored graph. The nodes of the graph represent the activities or work items which are performed. The edges of the graph, the control connectors, describe the potential sequence of execution of the activities. Definition of the process graph is via the IBM FlowMark Definition Language (FDL) or the built-in graphical editor. The runtime component of the workflow manager interprets the process graph and distributes the execution of activities to the right person at the right place, e.g. by assigning tasks to a work list according to the respective person, wherein said work list is stored as digital data within said workflow or process management computer system.
In F. Leymann and W. Altenhuber: “Managing business processes as an information resources”, IBM Systems Journal, Vol. 32(2), 1994, the mathematical theory underlying the IBM FlowMark product is described.
In D. Roller: “Verification von Workflows in IBM FlowMark”, in J. Becker und G. Vossen (Hrsg.): “Geschaeftsprozessmodellierung und Workflows”, International Thompson Publishing, 1995, the requirement and possibility of the verification of workflows is described. Furthermore the feature of graphical animation for verification of the process logic is presented as it is implemented within the IBM FlowMark product.
For implementing a computer based process management system, firstly the business processes have to be analyzed and, as the result of this analysis, a process model has to be constructed as a network of activities corresponding to the business process. In the IBM FlowMark product, the process models are not transformed into an executable form. At run time, an instance of the process is created from the process model, called a process instance. This process instance is then interpreted dynamically by the IBM FlowMark product.
A user typically interacts with the workflow management system via a graphical end user that represents the tasks to be performed by the user as icons. Work for a particular task is started by the user by double-clicking on the appropriate icon which in turn starts the program implementing the activity.
Another area of technology is the technology of performance or workload management. Workload management tries to optimize the usage of processor resources from a global point of view: Many different services (i.e. instances of programs) on a given system (either uni-processor, multi-processor systems such as a sysplex) compete for processor resources. Workload management allows performance goals to be specified for each service class (i.e. an abstraction of services of the same kind) and for collections of service classes (called an enclave). Priorities of service classes and enclaves can be specified, defining their relative importance from an enterprises business point of view. The workload manager will make processing resources available to enable services and enclaves to meet their goals. Moreover the workload manager will withdraw or reduce processing resources from services and enclaves in case it becomes clear that a service or enclave will not meet its goal but another will be able to achieve it when more resources will be at its liberty or in case a higher priority service or enclave is in jeopardy for not meeting its goal because of lacking resources. Thus for each system, workload management handles the system resources. Workload management coordinates and shares performance information across the system. How well it manages one system is based on ho

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Deriving and running workload manager enclaves from workflows does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Deriving and running workload manager enclaves from workflows, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Deriving and running workload manager enclaves from workflows will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3149828

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.