Wells – Processes – Assembling well part
Reexamination Certificate
1999-07-22
2001-04-03
Schoeppel, Roger (Department: 3672)
Wells
Processes
Assembling well part
C166S085400, C166S085300, C166S088300, C166S382000, C166S387000, C166S077200
Reexamination Certificate
active
06209652
ABSTRACT:
FIELD OF THE INVENTION
This invention pertains to methods and apparatus for running bottomhole assemblies in wells, with particular application to running long assembles in live wells associated with coiled tubing operations.
BACKGROUND OF THE INVENTION
This invention represents the marrying and adaptation of several concepts that give the final product a wide range of uses. The ability to function under a wide range of applications affords the instant deployment system and apparatus, including using a multifunctional head with a universal connect/disconnect (UCD) tool, significant speed advantages, especially when using coiled tubing for numerous and differing applications in quick succession. Among the numerous differing applications might be coiled tubing drilling, coiled tubing directional drilling and coiled tubing perforating. The system and apparatus is particularly applicable for all operations performed in whole or in part in a live well using long tools. The system and apparatus might be used for running out of a live well even if running in were performed in a dead well. The system has particular application for sour wells as the system significantly permits making and breaking joints using remote control, largely “hands free”.
Components of a multifunctional head system that can advantageously render its use universal include a fatigue resistant, high strength coiled tubing connector tool, a wireline anchor, an electrical bulkhead, a release tool and check valves, all combined with a rotationally insensitive, “hands free” deployment system that is fast to connect and disconnect. Such a multifunctional head system can offer a single coiled tubing head for use with fishing operations, drilling operations (with and without wireline), electric logging operations, perforating and simple circulating procedures. Field trials indicate that this invention can save significant time during coiled tubing drilling operations. While it takes several hours to connect a coiled tubing head, with the instant multifunctional head this operation may only be required once per job, not the normal 3 to 5 times.
There are connector tools available commercially that can connect a bottomhole assembly (BHA) to a string of coiled tubing. There are also separate tools for anchoring wireline, for providing means of disconnecting from the coil, for providing check valve functions and for providing tool connections. There are, however, to our knowledge no tools available that purport to combine these functions in a universal coiled tubing head. Existing combinations of presently commercially available tools can only be effected and used in narrowly constrained conditions.
The present invention, thus, solves one problem of having to use different coiled tubing heads for each different operation to be carried out.
This is particularly beneficial in a typical coiled tubing drilling operation where the sequence of operations would typically be:
Pull a plug
Drill out the shoe using a non-directional drilling string
Drill a directional hole using a directional drill string
Log the hole
(Line the hole)
These operations are traditionally separated by the time consuming work of reheading the coiled tubing. With the present multifunctional head invention these operations could now follow on from each other in a fast, efficient manner, requiring only a quick connector to be broken and remade between runs.
Design for a UCD and its system of deployment was originally developed in conjunction with directional drilling strings. It was subsequently modified for use with perforating guns. Another objective of the developing deployment system and apparatus was to provide a means for quickly connecting and disconnecting tools inside a live wellhead without the need for human, manual intervention. Beneficially, if the riser is open to well fluid and the well is sour, personnel should be able to perform as much as possible of the operation from a remote distance.
Existing systems that have been proposed to achieve this goal are relatively fragile, complicated and expensive. One unique feature of the present invention comprises the use of external pressure to effect tool connection and disconnection. Such use of external pressure has the advantage of permitting the use of simpler downhole components and standard oilfield blow out preventors (BOP's) for surface handling. A second feature of the invention permits making and breaking joints without rotation or rotational alignment.
Two deployment system embodiments have been tested so far. One uses a single external port, referenced to an internal pressure. The second uses two external ports, referencing the differential pressure between them. Either pressure sensitive method of connect/disconnect could be used for a variety of coiled tubing operations.
A preferred embodiment of the deployment apparatus utilizes a standard three ram BOP (Texas Oil Tools). The BOP is modified such that the top ram performs a horizontal position adjustment and a vertical height alignment function. Although in the disclosed preferred embodiment two standard BOP rams have been utilized to create a pressure chamber, it is clear that one ram could be modified to provide the necessary sealing around a connector section and to provide a channel for pressure to the connector device.
Several operations in oil and gas wells require the use of quite long tool strings. Two prime examples are perforating tools and drilling tools, as mentioned above. Whereas traditional handling of long tool strings in live well applications has been performed through the use of long risers, such risers are impractical with the very long tool strings. A solution developed for this problem, commonly referred to as “deployment”, involves running shorter modular sections of a BHA tool string into a live wellhead and then connecting the successive sections together.
Various methods of achieving deployment for the very long tool strings have been developed. However, these methods either have failed to allow for a true “hands-free” operation, or have resulted in complex mechanisms. The present invention solves this problem by using pressure external to the connector tool to achieve a “hands free” locking/unlocking operation. The use of pressure has the additional advantage of allowing the use of established wellhead pressure control equipment (BOP's), appropriately modified. The methodology of the present invention permits the use of this trusted standard surface equipment and provides in addition for incorporating a rugged, simple downhole connector tool. The result is a connector system and tool suitable for harsh environments, such as the vibrating, dirty environment associated with drilling.
Prior art deployment systems also appear to involve a further problem that may prevent them from being used for drilling operations. This problem is occasioned by the fact that connections in a drill string must withstand torque; otherwise the drill motor spins rather than the bit!
Anti-rotation devices needed in the connector tools have taken many forms, including splines, keys and castelations. All of these solutions to date have required rotational alignment of the connector tool sections before or during connecting. Rotational alignment is not easy in a coil environment as neither half of the connector can be easily rotated. Rotational alignment during connecting slows down the process and historically requires personnel around the riser during the process, a situation to be minimized in sour well operations. To solve this problem, a novel feature of the present invention is to ignore the objective of achieving a rotational lock as the vertical connection is being made. With the instant system the connection is initially left free to rotate during vertical connection. A rotational lock is triggered subsequently when the tool first experiences a rotational force. One particular method for practicing this system can be achieved through the use of spring loaded keys.
Thus, one aspect of the present invention includes
Portman Lance N.
Ravensbergen John E.
Felsman Bradley Vaden Gunter & Dillon, LLP
Schoeppel Roger
Shaper Sue Z.
LandOfFree
Deployment system method and apparatus for running... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Deployment system method and apparatus for running..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Deployment system method and apparatus for running... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2526393