Deparaffinization compositions and methods for their use

Chemistry: molecular biology and microbiology – Measuring or testing process involving enzymes or...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C435S040500, C435S267000

Reexamination Certificate

active

06632598

ABSTRACT:

TECHNICAL FIELD
This application relates to compositions and methods for removal of wax from wax-embedded biological samples.
BACKGROUND
Paraffin has been used for many years as an embedding medium in the preparation of tissue specimens for sectioning in a microtome to produce specimen sections for histological studies. Such embedding processes generally include the well known steps of specimen fixation, dehydration, clearing, paraffin infiltration or impregnation, blocking or embedding in a block of paraffin, slicing the block and specimen into thin sections, mounting the sections on slides, removing the paraffin and solvents employed for this purpose (deparaffinizing), and staining the sections prior to microscopic analysis. The primary purpose of the embedding medium is to permit the specimens to be sectioned and mounted in the natural state. Plastic resins have also been used as embedding medium to provide a harder specimen that allows cutting of thinner sections. However, the use of paraffin-embedding has the advantage that the wax can be dissolved away from specimens prior to staining, allowing sections to be stained in the form of naked slabs of biopolymer and avoiding the extra difficulties and artifacts associated with the presence of unremovable resin-embedding medium (Horobin 1991).
Recent improvements in paraffin-embedding compositions broaden its applicability while maintaining its compatibility with downstream manipulation and analysis of samples. For example, an improved paraffin-based embedding material, which includes a mixture of paraffin and an effective amount of ethylene-vinyl acetate copolymer (0.5% to 5% by weight of paraffin) allows shorter infiltration time and thinner sections (U.S. Pat. No. 4,497,792). Another improvement, the double-embedding technique, yields sections of thin tissue membranes, such as rodent mesenteric membranes that usually measure only 10 microns in thickness. In this method several membranes are fixed and mounted on four needles located at the bottom of a plastic box and then embedded in agarose. The agarose block is removed, dehydrated in alcohol, cleared with HistoPetrol (tradename for a mixture of isoparaffin hydrocarbons), permeated with paraffin and sectioned. The observed tissue morphology is comparable to that obtained with methacrylate plastic embedding but is less time-consuming, less hazardous since no plastic hardener and activator are used, and makes immunohistochemical studies easier (Ghassemifar et al. 1992).
Consequently, deparaffinization of fixed, e.g. formalin fixed, paraffin embedded tissue sections is still a widely used methodology, particularly in hospital histopathology laboratories for immunodiagnostic purposes.
Xylene, which is a flammable, volatile and toxic organic solvent, is currently commonly used in protocols to solubilize paraffin for deparaffinization of specimen sections. Typically, the microscope slide-mounted specimen is immersed in a xylene bath until the paraffin is solubilized. The deparaffinized specimen is then washed with a series of alcohol solutions of decreasing alcohol concentration, typically as baths in which the specimen is immersed, to remove xylene before a final wash with water. Efforts have been made to replace xylene in the deparaffinization process with less toxic and less volatile solvents. Terpene oil (e.g. available under the tradename AmeriClear from Baxter Health Care Diagnostics, Inc. McGaw Park, Ill.) and isoparaffinic hydrocarbons (e.g. available under the tradename MicroClear from Micron Diagnostics, Inc., Fairfax, Va.) produced equal deparaffinization compared to xylene (Jones et al. 1993). However, a series of alcohol washes were still required to remove either solvent prior to the water wash to achieve compatibility with most types of staining, particularly immunohistochemical staining. Furthermore, the use of paraffin-embedded specimens with automated systems, such as immunostainers, is increasing.
Accordingly, there is still a need for deparaffinization compositions and methods that can effectively remove paraffin or improved paraffin-based embedding materials from specimens prior to histochemical or other diagnostic analyses, while minimizing danger to users, allowing compatibility with automated systems, and maintaining compatibility with downstream analyses. Deparaffinization compositions and methods that entail no or limited toxicity or carcinogenicity, produce no or minimal odors, reduce the quantity of toxic solvents used, minimize hazardous wastes, and/or decrease corrosiveness and flammability are needed.
Cited Literature
1. Horobin, R. W., In Histochemical and Immunochemical Techniques: Application to pharmacology and toxicology, (1991) Bach, P. and Baker, J., eds., Chapman & Hall, New York, N.Y. pp 1-9.
2. Ghassemifar, R. et al. (1992) “A double-embedding technique for thin tissue membranes” Biotech. Histochem. 67:363-366.
3. Jones, R. T. et al. (1993) “Comparison of deparaffinization agents for an automated immunostainer” J. Histotechnology 16:367-369.
4. Mullin, L. S. et al. (1990) “Toxicology update isoparaffinic hydrocarbons: a summary of physical properties, toxicity studies and human exposure data” J. Appl. Toxicol. 10:135-142.
SUMMARY OF THE INVENTION
Compositions and methods are provided for dewaxing wax-embedded biological specimens prior to histochemical or other analyses. The dewaxing compositions and methods provided can effectively remove wax or modified wax-based embedding materials, particularly paraffin or paraffin-based, from specimens prior to histochemical or other analyses, while minimizing danger to users, allowing compatibility with automated use, and maintaining compatibility with downstream analyses. Dewaxing compositions and methods that entail no or limited toxicity or carcinogenicity, produce no or minimal toxic odors, reduce the quantity of toxic solvents used, minimize hazardous wastes, and/or decrease corrosiveness and flammability are provided. The compositions and methods are especially useful for eliminating the use of xylene and for reducing the use of alcohol in preparation of tissue sections for immunohistochemical staining, particularly in hospital laboratories. Dewaxing compositions of the invention comprise a paraffin-solubilizing organic solvent, a polar organic solvent, and a surfactant as specified below in detail. Compositions can optionally comprise water.
A method for dewaxing biological specimens prior to histochemical or other analyses is provided. The method involves contacting a wax-embedded specimen with a dewaxing composition of the invention to solubilize the wax impregnating the specimen prior to histochemical analysis, such as immunohistochemical staining.
It is an object of the invention to eliminate the need for alcohol and alcohol baths for post-dewaxing washes by providing a method which involves contacting a dewaxed specimen, which has been dewaxed by a dewaxing composition of the invention, with an aqueous wash solution comprising a detergent to remove residual dewaxing composition.
A kit for dewaxing a wax-embedded specimen is provided. The kit comprises a dewaxing composition of the invention and can further comprise a second composition of (1) an immunostaining reagent or (2) an aqueous wash solution comprising a detergent for removing residual dewaxing solution.
The present invention eliminates or minimizes the use of toxic organic solvents in immunohistological laboratories. The compositions and methodology described herein effectively remove paraffin or other wax residue from tissue sections and have no adverse effect on the quality of tissue sections prepared for immunohistochemistry. Application of this dewaxing methodology can be extended to other applications where removal of wax from tissue sections are desired, such as in situ hybridization.
DESCRIPTION OF SPECIFIC EMBODIMENT
The present invention provides new dewaxing solvent compositions for removal of paraffin or other waxes from wax-embedded biological specimens for histochemical or other analyses. The compositions comprise a

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Deparaffinization compositions and methods for their use does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Deparaffinization compositions and methods for their use, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Deparaffinization compositions and methods for their use will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3142175

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.