Dental implant system with repeating microgeometric surface...

Dentistry – Prosthodontics – Holding or positioning denture in mouth

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Reexamination Certificate

active

06419491

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of Invention
The present invention relates to the provision of ordered repeating microgeometric patterns to bone and tissue interface zones of dental implants, to effect enhanced adhesion to soft tissue and osseointegration of an implant to bone.
2. Prior Art
Numerous publications establish that cell attachment growth, migration and orientation, as well as extracellular matrix synthesis and orientation thereof, are moderated by substrate surface shape (i.e., microgeometry) as well as by surface chemistry. However, the findings in such publications do not address what effect different substrate microgeometrics and dimension would have on various cell colonies' growth and migration parameters as opposed to the morphology of individual cells. Thus, while the prior art establishes that surface microgeometry of substrates influences cell orientation, it does not disclose or suggest what effect different surface microgeometry as implants would have on either the rate or direction of the cell colony growth of different cells of soft tissue or bone surrounding or abutting such a substrate.
Surface microgeometry interaction between soft tissue or bone and implant surfaces has been demonstrated on ceramic and metallic orthopedic implants. This interaction indicates that smooth implant surfaces promote the formation of thick fibrosis tissue encapsulation and that rough implant surfaces promote the formation of thinner, soft tissue encapsulation and more intimate bone integration. Smooth and porous titanium and titanium alloy implant surfaces have been shown to have different effects on the orientation of fibrous tissue or bone cells in vitro. In addition, surface roughness was demonstrated to be a factor in tissue or bone integration into implants having hydroxyapatite surfaces and to alter the dynamics of cell attachment and growth on polymer implants whose surfaces had been roughened by hydrolytic etching.
From the examination of in vitro growth characteristics of cells cultured on flat surfaces there have evolved the following cell “behavioral” characteristics:
1. attachment-dependent growth: the dependence of normal diploid cell or substrate attachment for normal growth;
2. density-dependent inhibition: the tendency of such cells to slow or stop growing once a confluent monolayer is formed;
3. substrate-exploring function: the ability of some types of cells to migrate on a surface in search of acceptable areas for attachment and growth; and
4. contact guidance: the ability of some types of cells to migrate and orient along physical structures. J. L. Ricci, et al Trans.Soc.Biomat. 17.253 (1991); J. L. Ricci, et al,
Tissue-Inducing Biomaterials
, Mat. Res. Soc. Symp. Proc. 252,221-229 (1992); J.Ricci, et al.,
Bull.Hosp. Joint. Dis. Orthop. Inst. supra;
J. L. Ricci, et al,
J. Biomed Mater Res.
25(5), supra.; D. M. Brunette, et al, J. Dent. Res., 11-26 (1986); P. Clark, et al.
Development,
108, 635-644 (1990).
The behavioral characteristic of cellular contact guidance has been demonstrated in vitro on a variety of surfaces such as grooved titanium, grooved epoxy polymer, and collagen matrix materials of different textures and orientations. Grooved machined metal and polymer surfaces have also been shown to cause cellular and extracellular matrix orientation in vivo and to encourage or impede epithelial downgrowth in experimental dental implants. B. Cheroudi, et al.
J Biomat. Mater. Res.
24. 1067-1085 (1990) and 22. 459-473 (1988); G. A. Dunn, et al supra; J. Overton, supra; S. L. Shor. supra; R. Sarber, et al, supra.
Substrates containing grooves of different configurations and sizes have been shown to have orientating effects on fibroblasts and substrates containing grooves of varying depth have been shown to have different degrees of effect on individual cell orientation establishing that grooved surfaces can modulate cell orientation in vitro and can cause oriented cell and tissue growth in vivo. For example, it has been shown that fibrous tissue forms strong interdigitations with relatively large grooves in the range of about 140 &mgr;m and can result in an effective barrier against soft tissue downgrowth perpendicular to the grooves. It has also been shown that smaller grooves on the order of about 3-22 &mgr;m were more effective in the contact guidance of individual cells. D. M. Brunette, et al.
Development,
supra; P. Clark et al, supra.
The findings in these publications do not address what effects different substrate microgeometries and sizes would have on various cell colonies growth and migration parameters as opposed to morphology of individual cells. That is, these publications do not disclose or suggest what effect different surface microgeometry of implants would have on either the rate or direction of the cell colony growth of different cells and different tissues surrounding an implant. In addition, these publications do not disclose or consider the most effective textured substrate or crude microgeometry for controlling cell colony growth.
The current methods used to texture the surfaces of dental implant elements typically employ sand, glass bead and alumina grit blasting techniques, and acid etching techniques, of the implant surface. In sand, glass bead or alumina grit blasting techniques, compressed air is generally used to drive a blasting medium onto the implant surface at a high velocity to deform and, in some instances, remove portions of the implant surface. The surface texture obtained depends upon the size, shape and hardness of the implant material and on the velocity at which the blasting medium is driven onto the implant surface. The most common surfaces produced by sand or glass bead blasting are matte or satin-finish, while alumina grit blasting produces a random roughened surface.
In acid etching techniques a pattern or mask is placed upon that surface of the implant desired not to be texturized. The exposed parts are then typically treated with an acid that corrodes the exposed surface of the implant whereupon the acid treated surface is washed or neutralized with an appropriate solvent and the pattern or mask is removed.
Illustrative of the sand or glass bead blasting technique is the method disclosed in U.S. Pat. No. 5,057,208 to H. R. Sherry, et al wherein the implant surface is shot blasted with metal shot followed by glass bead blasting and then electropolishing.
Illustrative of an acid etching technique is the method disclosed in U.S. Pat. No. 4,778,469 to R. Y. Lin, et al wherein an acid soluble (e.g., aluminum or zinc) space occupier is used. The space occupier contains the pattern to be transferred to the implant surface and is placed on the desired portion of the implant surface that is to be texturized. The space occupier is pressed into the implant surface and is then removed by treating it with acid.
It has been found that these typical blasting techniques leave debris from the processing materials embedded in the implant surface as contaminants. This debris has also been found in soft tissue isolated from the areas adjacent to failed press-fit total hip replacements indicating that the debris was released from the surface of the implants. These problems of residual contaminants debris have been overcome by using the use of laser systems which produces texturized microgeometric substrates without introducing embedded, particulate contaminants. See, for example, U.S. Pat. Nos. 5,645,740 and 5,607,607 to Naiman and Lamson. This instant invention refines and extends the teaching thereof with particular reference to dental implants. The prior art is also characterized by implants intended for use in soft tissue, such as U.S. Pat. No. 5,011,494 to Von Recum, et al and its related patent family. Therein, texturized surfaces of implants are provided with a variety of geometric configurations which comprise a plurality of projection and recesses formed in a three-dimensional body. It is therein specified that the mean bridging, breadth and diametric distances and dimension play a role in optimiz

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Dental implant system with repeating microgeometric surface... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Dental implant system with repeating microgeometric surface..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Dental implant system with repeating microgeometric surface... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2877696

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.