Dental illumination device

Dentistry – Apparatus – Having means to emit radiation or facilitate viewing of the...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C433S215000

Reexamination Certificate

active

06733290

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates generally to a device that attaches to a standard light source to transmit and distribute light energy simultaneously across the arches of upper and lower teeth for dental tooth whitening and photo initiation of light curing resins while at the same time retaining the benefits of the light source to be used for individual tooth whitening and curing. More particularly, the invention may use a single standard light source to simplify the process of tooth whitening and curing.
BACKGROUND OF THE INVENTION
As the world population increases and dental hygiene becomes more important, there are and will be a substantial increase in the number of patient visits to the dentist office. The needs from one patient to another may vary from teeth cleaning to taking x-rays, from filling cavities to whitening teeth. With an increasing number of visits to the dentist office, dentists face a daunting task of not only increasing their patient loads, but also providing a more effective and efficient patient care.
There have been many advances in dentistry over the years which have improved patient care. One of the advances includes the incorporation of photoinitiators into adhesive compositions useful for dental restoration. The light-initiated curing of a polymerizable matrix material involves photosensitization of light-sensitive compounds by ultraviolet or visible light, which, in turn, initiates polymerization of the matrix material. The photoinitiators are well known, and include by way of example, the combination of a photosensitive ketone (an acceptor in exciplexes) and a tertiary amine (a donor in exciplexes). Typical photosensitive ketones include benzophenone, acetophenone, thioxanthen-9-one, 9-fluorenone, anthraquinone, 4′-methoxyacetophenone, diethoxyacetophenone, biacetyl, 2,3-pentadione, benzyl, 4,4′-methoxybenzil, 4,4′-oxidibenzil, and 2,3-bornadione (dl camphroquinone). Typical tertiary amines include ethyl-4-dimethyl amino benzoate, ethyl-2-dimethyl amino benzoate, 4,4-bis(dimethylamino) benzophenone, methyldiethanolamine, and dimethylaminobenzaldehyde.
Another advance in the dental arts is the ability to bleach teeth back to the original white color. This, coupled with society's consciousness of teeth discoloration has resulted in the demand for oral care products and associated procedures for whitening teeth to rapidly increase. There are many methods of treatment relating to the bleaching of teeth. Power bleaching materials contain high concentrations of hydrogen peroxide or other source of active oxygen. Most dental bleaches are applied as gels or pastes which are freshly prepared as needed in the particular dental office. Since hydrogen peroxide is a liquid, a powder is mixed with it for thickening. There may also be other ingredients present, such as catalysts or indicators. Often times, light or heat is part of power bleaching. One of the most frequently used procedures is the application of bleaching agents, such as hydrogen peroxide, and light to whiten discolored teeth.
The combination of photoinitiators and light has rapidly lowered the curing time while increasing bonding strengths of many of the light curing resins. Similarly, the combination of light and oxygen radical generating agents has provided a more effective means for whitening teeth. In view of the use of photoinitiators in dental restorative compositions and the use of light activated bleaching agents, there has been a strong push to improve the light sources that provide the light for curing dental restorative compositions and for the activation of bleaching agents that are applied during teeth whitening procedures.
The light sources currently in use fall into two categories, single point sources and multiple point sources. Single point sources transmit light to a single spot through a single optic while multiple point sources transmit light with multiple transmitting optics. Both systems rely on rigid light guides, flexible liquid light guides, and fiber optic bundles to transmit a spot of light at the distal end of the optics. The size of the spot is dependant on the construction of the optic and the active diameter of transmitting optic. Typical light sources include but are not limited to Tungsten Halogen Lamps and derivatives of this technology, Xenon Short Arc Lamps, Metal Halide Lamps, Laser, and LED's.
Despite the plethora of light sources, existing technology that provides two arch illumination fails to provide a method or make it easy for the clinician to work on a single tooth. A drawback to these existing full arch light sources that are used to transmit light simultaneously to upper and lower teeth is that they are large, bulky and cumbersome thus requiring a dedicated office. Moreover, these light sources are not easily transportable. These instruments take up floor space and cannot be mounted to the dental chair, wall or counter top. Furthermore, the optic device that transmits the light is not disposable and cannot be easily sterilized.
The full arch light sources are limited to two arch illumination and cannot be used to individually treat discoloration of a single tooth. A further drawback to this equipment is that it is limited to one type of procedure (i.e., exposure of multiple teeth with light). In other words, the equipment does not allow for the exposure of a single spot such as one tooth or one specific area of a tooth. Even though a clinician may only be treating one tooth, the current technologies expose multiple teeth. This is inefficient since a patient's teeth may have varied coloration (e.g., stained) and thus the exposure of all the teeth will not allow the clinician to resolve the single discolored tooth that is being treated.
Today's equipment relies on multiple light transmitting devices such as liquid light guides or fiber optic bundles to focus the light energy around the arches of the teeth. Currently, single point light sources do not allow simultaneous two arch illumination. In contrast to the multiple point sources, the existing single point light sources transmit light to a spot that is roughly the size of a tooth. Thus, the single point light sources cannot be used to treat both arches simultaneously.
U.S. Pat. No. 5,813,854 (“the '854 patent”), attempts to remedy the shortcoming of the existing technologies. The '854 patent discloses a device that utilizes a light diffusion system to direct light to all of the patients tooth. The '854 patent device includes light diffusion means that must be installed in the structure of the device. The light diffusion means are installed in a housing and are used for diffusing light directed into the housing throughout the housing. This complicated system has several drawbacks including the required insertion of diffusion means such as optical gratings (i.e., mirrors) which extend between the upper and lower surfaces of the device. These gratings comprise a complex system of multiple mirrors to reflect light inside the housing to the front of the housing and to the patient's mouth. In addition, the diffusion of light is not efficient because light scatters in directions that are not useful.
A further drawback of the above-mentioned patented device is that it is an elaborate, cumbersome and expensive device. This complex diffusing means requires additional machining and manufacturing protocols which drive the costs of the device higher. It employs a number of components which makes it inherently less reliable than a device that is a simple one component structure.
SUMMARY OF THE INVENTION
One embodiment of the present invention pertains to an electromagnetic radiation conveyance device. This electromagnetic radiation conveyance device includes a proximal end, a distal end, and a light directing means. The proximal end is configured for attachment to an electromagnetic radiation emitting device. The distal end is anatomically preformed with a profile complementary to a shape of a dental arch. The light directing means is

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Dental illumination device does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Dental illumination device, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Dental illumination device will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3257265

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.