Synthetic resins or natural rubbers -- part of the class 520 ser – Synthetic resins – Processes of preparing a desired or intentional composition...
Reexamination Certificate
2000-03-31
2001-10-23
Szekely, Peter (Department: 1514)
Synthetic resins or natural rubbers -- part of the class 520 ser
Synthetic resins
Processes of preparing a desired or intentional composition...
C523S115000, C523S220000, C523S223000, C106S035000, C433S228100
Reexamination Certificate
active
06306927
ABSTRACT:
BACKGROUND TO THE INVENTION
Dental composites, which essentially comprise a mixture of a polymerizable resin and a glassy filler, have been developing since the early 1970's, when the first materials of this class were introduced. See for example R. L. Bowen et al., “A new series of X-ray-opaque reinforcing fillers for composite materials, J. Dental Research, vol. 51(1) 1972. Until this time, fillings had been based on silver-mercury amalgams, mixtures of acid leachable glass with phosphoric acid (known as “silicate cements”), or unfilled polymerizable resins, and each class of material has certain strengths and weaknesses. For instance, amalgams are generally considered to be cheap and easy to use, and to have a long lifetime due to their strength and high resistance to wear. Disadvantages of amalgam are toxicity of the mercury and the black colour of the filling. Silicate fillings were approximately tooth coloured and released fluoride into the tooth to help prevent a recurrence of decay. However they tended to dissolve quickly and were weak, and are barely used nowadays. Unfilled resins brought advantages of toughness, convenience, and aesthetics, but were still weak, limiting their use to areas of low stress. These unfilled resins also have a high volume shrinkage, commonly at least 5%. This leads to formation of gaps between the filling and the tooth, and subsequent recurring decay of the tooth around and underneath the restoration. The introduction of composite materials brought improvements in surface hardness, higher physical strengths, good aesthetics, lower shrinkage, and also higher resistance to wear. However the wear rate of these composite materials is still higher than of amalgam, and their shrinkage of around 2 to 3 volume percent still leads to gap formation and recurrent caries. It is an aim of many researchers in the dental area to develop composite materials with higher strength, reduced shrinkage and higher resistance to wear, which may be used in place of amalgam. Preferably the material should also be extrudable from a dental syringe since this procedure is not only convenient and time saving for the dentist, but also helps to avoid the inclusion of air bubbles in the cavity.
The present invention provides composite materials with low shrinkage and high surface hardness, and a method for preparing these composite materials. Within certain ranges of the invention materials are provided which may also be extruded from a dental syringe designed for this use.
PRIOR ART
Composite materials for dental use and general methods for making them have been known for many years. See for example BP1401805, U.S. Pat. No. 3,740,850, U.S. Pat. No. 4,215,033, and U.S. Pat. No. 3,801,344. These patents essentially describe mixtures of acrylate resins with glass or various metal oxides as filler and claim, for example, the advantages of natural colour and desirable hardness. Although an improvement at the time, these early materials were still relatively week and had low resistance to wear. Improvements in surface hardness were achieved when milling procedures improved and fillers with smaller particle sizes became available. Attempts were also made to use different types of monomer, for instance a silane containing monomer as in U.S. Pat. No. 4,504,231, or a mixture of monomers as in U.S. Pat. No. 5,730,601. However the shrinkage of these materials still remained too high, at around 2 to 3 percent by volume. Further movements were made by the inclusion two or more types of filler particle, for example a conventional glass fillers with particle size ranges of 0.5 to 40 microns and 0.2 to 15 microns, together with a fine filler with particle size in the range 5 to 150 nano metres, as in U.S. Pat. No. 4,649,165. These materials however still have the problem that it is hard to incorporate sufficient filler into the composite to obtain the desired hardness. Attempts to overcome this problem have also included the use of surfactants, as in U.S. Pat. No. 4,374,937. However there remains the problem that use of too much conventional filler material in a composite leads to a stiff paste which is hard to manipulate, and ultimately to a dry and non-cohesive mixture. It is desirable to be able to extrude a dental filling material directly from a syringe into the tooth cavity, and this is not possible with such stiff pastes. Such pastes when cured typically have a yield strength around 130 MPa, a surface Vickers hardness of about 70, and a volume shrinkage between 2.5 to 3 percent. The yield strength is the maximum load that may be applied to a material before permanent deformation and damage occurs, and it is desirable that this is a high as possible. A high surface hardness is needed because this reduces abrasive wear of the material, while low shrinkage is desirable in order to minimise gap formation around a filling.
DETAILED DESCRIPTION OF THE INVENTION
In the present invention it has been found that by the use of filler combinations with a certain defined size distribution and size relationship, an unexpectedly high amount of filler may be combined with the resin matrix without the paste becoming either stiff and hard to handle, or crumbly and non-cohesive. The resulting pastes when cured have a yield strength of at least 180 MPa, a Vickers hardness of over 90, and a volume shrinkage on curing less than 2% conventionally made composite paste commonly contains ground glass particles with a particle distribution of about 0.05 to 1 micron together with small amounts of a siliceous filler with a particle size distribution between about 0.01 and 0.1 microns. This latter is added to adjust the handling properties of the paste. The total amount of filler contained in such a composition to give a consistency which is clinically useful is commonly around 75%, but may be as high as about 80% in some cases. Typical physical properties are a yield strength around 130 MPa, a Vickers hardness around 70, and shrinkage on cure of about 2.5 to 3.0%. The Shore A hardness of the uncured paste is used as a measure of “packability” and “handling characteristics” of the paste, and it has been determined empirically that for filling materials which are to be used in posterior cavities an optimum value for the Shore A hardness is between about 50 and 55. A paste made as above typically has a Shore A hardness of around 30 to 45. In the present invention, a paste as above is taken and mixed with an additional fraction of filler chosen such that the mean particle size of this additional filler is at least about twenty times the size of the largest filler in the paste, and is preferably mono-modal. In practice the particle size of this additional filler will have a distribution, but the largest and smallest particles in this filler should preferably be within about 25% of the mean size. Thus in the above example, the largest particle size contained in the paste is 1 micron, and the mean size of the additional filler should therefore be at least about 20 microns, with no particles larger than 25 microns or smaller than 15 microns. However, the additional filler may also be larger, for example with a mean size of about 65 microns. In this case the largest and smallest particles contained in the filler should be around 85 microns and 50 microns respectively. Such a filler fraction may conveniently be made by passing milled ass through commercially available sieves.
REFERENCES:
patent: 3740850 (1973-06-01), Bowen et al.
patent: 3801344 (1974-04-01), Dietz
patent: 4215033 (1980-07-01), Bowen
patent: 4243578 (1981-01-01), O'Sullivan et al.
patent: 4297266 (1981-10-01), Isben et al.
patent: 4374937 (1983-02-01), Nemcek et al.
patent: 4386912 (1983-06-01), Nogase et al.
patent: 4388069 (1983-06-01), Orlowski
patent: 4407984 (1983-10-01), Ratcliffe et al.
patent: 4454258 (1984-06-01), Kawahara et al.
patent: 4459193 (1984-07-01), Ratcliffe et al.
patent: 4504231 (1985-03-01), Koblitz et al.
patent: 4544359 (1985-10-01), Waknine
patent: 4572920 (1986-02-01), Rawls et al.
patent: 4649165 (1987-03-01), Ku
Blackwell Grodon B.
Utz Karen
Bieber James B.
Dentsply DeTrey GmbH
Hura Douglas J.
Szekely Peter
LandOfFree
Dental composite restorative material and method of... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Dental composite restorative material and method of..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Dental composite restorative material and method of... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2563331