Dense fluid cleaning centrifugal phase shifting separation...

Liquid purification or separation – With alarm – indicator – register – recorder – signal or... – Material level or thickness responsive

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C210S089000, C210S149000, C210S360100, C210S391000, C134S05600D, C134S148000

Reexamination Certificate

active

06802961

ABSTRACT:

BACKGROUND OF INVENTION
1. Field of the Invention
The present invention relates to dense fluid cleaning. More particularly to the use of a dense fluid such as carbon dioxide in a process of centrifugal phase shifting separation as an environmentally sound alternative to organic solvents.
2. Related Art
Liquid-phase phase carbon dioxide cleaning devices and processes can be found in the art. However, none utilize a dense fluid centrifuge or centrifugal processes similar to those detailed herein.
Carbon dioxide exists as a low-density gas at standard temperature and pressure conditions and possesses phase boundaries with a triple point (Solid-Liquid-Gas co-exist in equilibrium like a glass of ice cubes and water) and a critical point (Liquid-Gas have identical molar volumes). Through pressure or temperature modification, carbon dioxide can be compressed into a dense gas state.
Compressing carbon dioxide at a temperature below its critical temperature (C.T.) liquefies the gas at approximately 70 atm. Cooling liquid-state or gas-state carbon dioxide to its freezing point causes a phase transition into solid-state carbon dioxide. Compressing carbon dioxide at or above its critical temperature and critical pressure (C.P.) also increases its density to a liquid-like state (5), however there is a significant difference between compression below and above the critical point.
Compressing carbon dioxide above its critical point does not effect a phase change. In fact, carbon dioxide at a temperature at or above 305 K (88 F.) cannot be liquefied at any pressure, yet the density for the gas may be liquid-like. At the critical point the density is approximately 0.47 g/ml. At or above this point carbon dioxide is termed a supercritical fluid (SCF). Supercritical carbon dioxide can be compressed to a range of liquid-like densities, yet it will retain the diffusivity of a gas. Continued compression of supercritical carbon dioxide causes continued increase in density, approaching that of its liquid phase.
Carbon dioxide is but one of the compounds which is adequate for use as the dense fluid in the within invention other compounds exhibiting suitable dense fluid properties include propane, butane, sulfur hexafluoride liquid nitrogen and liquid ammonia. Those skilled in the art will recognize that without exceeding the intended scope of this invention other compounds exhibiting similar dense fluid properties may be substituted for use in the herein described apparatus and processes.
The use of conventional dense fluid cleaning technology may result in a pooling and supercooling of liquid carbon dioxide trapped within pores and cavities of a substrate—leading to the formation of dry ice and recontamination of substrate. The process and apparatus to perform dense fluid centrifugal separations described herein results in precision cleaning using one unit volume of dense fluid per cleaning operation and ability to remove small insoluble particles from deep voids or cavities without dry ice formation or recontamination of the substrate Accordingly, the within dense fluid cleaning and separation apparatus and process overcomes limitations of conventional dense fluid technology and may provide an environmentally-safer cleaning and finishing alternative to organic solvents.
Definitions
The physicochemical cleaning processes and devices described herein are unique to this development field, each exhibiting distinctly different mixing and separation phenomenon. As such, unique terms have been invented herein to describe these processes and devices and are given below:
Dense Phase Carbon Dioxide is used herein to describe all phases of carbon dioxide: liquid state, supercritical state, dense gas state, and solid-state. These states have densities that are within the range of liquid-like or near-liquid substances.
Dense Fluid Centrifugal (Centripetal) Process A process whereby the substrates are rendered immobile under a variable centripetal force which is greater than the gravitational force, and are moved bi-directionally about a central axis in a rotatable drum in predominantly the vertical plane at a rotational velocity which is sufficient to prevent the substrates from mixing within the centrifuge compartment (the rotational velocity necessary is dependent upon centrifuge diameter and weight of substrates), but allows the dense fluid to flow freely at high fluid shearing velocity around and through the substrates. The Dense Fluid Centrifugal process described herein creates two dense fluid zones—(1) a turbulent cleaning zone located from the center of the centrifuge to outside of the centrifuge drum and a (2) non-turbulent separation zone located about the perimeter of the centrifuge wherein gravitational forces move separated contaminants circumferentially to the lower half for subsequent removal from the centrifuge through a drain port.
Dense Fluid Barreling Process: A process whereby the substrates are mixing bi-directionally under predominantly gravitational force, and are sliding over one another, predominantly in a segmented upper layer, as the barrel rotates slowly about a central axis in a rotatable drum in a plane between vertical and horizontal planes. The rotational velocity is maintained purposefully slow to prevent the substrates from damaging one another during mixing within the barrel compartment (the rotational velocity is dependent upon barrel diameter, weight and fragility of the substrates), but allows the dense fluid to flow freely at lower fluid shearing velocity around and through the substrates. The Dense Fluid Barreling process described herein creates only one dense fluid zone—(1) a semi-turbulent cleaning zone located below the center of the barrel compartment to the lower half of the barrel.
Dense Fluid Tumbling Process: A process whereby the substrates are mixing bi-directionally under predominantly gravitational force, and are sliding over one another, predominantly in a segmented upper layer, as the barrel rotates slowly about a central axis in a rotatable drum in the horizontal plane. The rotational velocity is maintained purposefully slow to prevent the substrates from damaging one another during mixing within the barrel compartment (the rotational velocity is dependent upon barrel diameter, weight and fragility of the substrates), but allows the dense fluid to flow freely at lower fluid shearing velocity around and through the substrates. The Dense Fluid Tumbling process described herein creates only one dense fluid zone—(1) a semi-turbulent cleaning zone located below the center of the barrel compartment to the lower half of the barrel.
Centrifugal Froth Flotation and Separation Process: A process whereby contaminant removal from within voids, cavities and interstitial layers is greatly enhanced by the combined scouring, cavitation and shearing phenomenon produced by the presence of gas-liquid interphases, gas-solid interphases and a variable and bi-directional centripetal force.
Centrifugal Phase Shifting Separation Process: A process whereby contaminant removal from within voids, cavities and interstitial layers is greatly enhanced by the combined scouring, cavitation and shearing phenomenon produced by the isobaric and isothermal exchange of saturated dense fluid vapor and saturated dense fluid liquid, under vapor-liquid equilibrium conditions, and simultaneously in the presence of a variable and bi-directional centripetal force.
SUMMARY OF THE INVENTION
The present invention selectively controls the phase change of carbon dioxide between a “solvent” phase (saturated liquid phase) and “non-solvent” phase (saturated vapor phase) at relatively constant pressure and temperature—isothermal and isobaric change. Precipitated contaminants are separated from a substrate contained in a turbulent “centrifugal zone” of the dense fluid centrifuge by centripetal force and “transported” by centripetal force to a non-turbulent and circumferential “separation zone” located at the walls of the dense fluid centrifuge. The present invention uses a process of controlled phase shifting

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Dense fluid cleaning centrifugal phase shifting separation... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Dense fluid cleaning centrifugal phase shifting separation..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Dense fluid cleaning centrifugal phase shifting separation... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3317557

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.