Delivery system for cyclopropenes

Plant protecting and regulating compositions – Plant growth regulating compositions – Organic active compound containing

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C504S359000

Reexamination Certificate

active

06444619

ABSTRACT:

The present invention relates to complexes formed from molecular encapsulation agents such as cyclodextrin, and cyclopropene and its derivatives such as methylcyclopropene, which are capable of inhibiting the ethylene response in plants. Such complexes provide a convenient means for storing and transporting these compounds which are reactive gases and highly unstable because of oxidation and other potential reactions. Such complexes also provide convenient methods of delivering to plants these compounds in order to extend their shelf life.
It is well known that ethylene can cause the premature death of plants including flowers, leaves, fruits and vegetables through binding with certain receptors in the plant. It can also promote leaf yellowing and stunted growth as well as premature fruit, flower and leaf drop. Because of these ethylene-induced problems, very active and intense research presently concerns the investigation of ways to prevent or reduce the deleterious effects of ethylene on plants. U.S. Pat. No. 5,518,988 discloses the use of cyclopropene and its derivatives, including methylcyclopropene, as effective blocking agents for ethylene binding. However, a major problem with these compounds is that they are typically unstable gases which present explosive hazards when compressed. As a solution to these problems, U. S. Pat. No. 6,017,849 discloses a method of incorporating these gaseous compounds into a molecular encapsulation agent complex in order to stabilize their reactivity and thereby provide a convenient and safe means of storing, transporting and applying or delivering the active compounds to plants. For the most active cyclopropene derivative disclosed in U. S. Pat. No. 5,518,988, 1-methylcyclopropene, the preferred molecular encapsulation agent is a cyclodextrin with a-cyclodextrin being the most preferred. The application or delivery of these active compounds is then accomplished by simply adding water to the molecular encapsulation agent complex. The complex prepared according to the methods disclosed in U.S. Pat. No. 6,017,849 provides the material in the form of a powder.
Powder formulations suffer from a number of deficiencies including, for example, dustiness, difficulty in measuring small amounts (which may require that the material be prepackaged), and difficulty in controlling the release of the encapsulated material from the powder. The 1-methylcyclopropene/&agr;-cyclodextrin complex noted above releases the 1-methylcyclopropene very quickly. It would be advantageous to moderate the release of 1-methylcyclopropene so that very little of it is released during the first few minutes after the complex is added to water. This would help prevent the escape of the 1-methylcyclopropene from the treatment area before it can be sealed and, consequently, improve the efficacy of the treatment.
We have discovered a modification to the encapsulation method of U. S. Pat. No. 6,017,849 which overcomes many deficiencies inherent in a free-flowing &agr;-cyclodextrin based powder delivery system. Because 1-methylcyclopropene releases from the &agr;-cyclodextrin complex so easily in the presence of water, water is not used in the present process to make the improved delivery system. We have found that pressure agglomeration of the 1-methylcyclopropene/ &agr;-cyclodextrin complex can be used to form tablets, wafers, pellets, briquettes, and similar forms, with or without added adjuvants. These delivery systems slow the release of 1-methylcyclopropene yet still allow its complete release. This same process may be equally applicable to other cyclopropene/molecular encapsulation agent complexes.
The present invention is, therefore, a composition comprising:
a) a cyclopropene of the formula:
 wherein R is hydrogen or a substituted or unsubstituted alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkylalkyl, phenyl, or naphthyl group; wherein the substituents are independently halogen, alkoxy, or substituted or unsubstituted phenoxy;
b) a molecular encapsulation agent within which the cyclopropene is encapsulated; and
c) optionally one or more adjuvants;
wherein the composition is pressure agglomerated.
As used herein, the term “alkyl” means both straight and branched chain (C
1
-C
20
) radicals which include, for example, methyl, ethyl, n-propyl, isopropyl, 1-ethylpropyl, n-butyl, tert-butyl, isobutyl, 2,2-dimethylpropyl, pentyl, octyl, and decyl. The terms “alkenyl” and “alkynyl” mean (C
3
-C
20
)alkenyl and (C
3
C
20
)alkynyl groups such as, for example, 2-propenyl, 2-butenyl, 3-butenyl,
2-
methyl-2-propenyl, and 2-propynyl. The term “cycloalkylalkyl” means a (C
1
-C
15
) alkyl group substituted with a (C
3
-C
6
) cycloalkyl group such as, for example cyclopropylmethyl, cyclopropylethyl, cyclobutylmethyl, and cyclopentylethyl. The term “haloalkyl” means an alkyl radical wherein one or more of the hydrogen atoms have been replaced by a halogen atom. The term “halogen” means fluorine, chlorine, bromine, and iodine.
Preferably, R is (C
1
-C
10
) alkyl. More preferably, R is (C
1
-C
8
) alkyl. Even more preferably R is (C
1
-C
4
) alkyl. Most preferably, R is methyl.
Preferred encapsulating agents include cyclodextrins, crown ethers, polyoxyalkylenes, polysiloxanes, and zeolites. More preferred encapsulating agents include &agr;-cyclodextrin, &bgr;-cyclodextrin, and &ggr;-cyclodextrin. The most preferred encapsulating agent, particularly when the cyclopropene is 1-methylcyclopropene, is &agr;-cyclodextrin. The most preferred encapsulting agent will vary depending upon the size of the R substituent. However, as one skilled in the art will appreciate, any cyclodextrin or mixture of cyclodextrins, cyclodextrin polymers as well as modified cyclodextrins can also be utilized pursuant to the present invention. Cyclodextrins are available from Wacker Biochem Inc., Adrian, Mich. or Cerestar USA, Hammond, Ind., as well as other vendors.
As used herein, all percentages are percent by weight and all parts are parts by weight, unless otherwise specified, and are inclusive and combinable. All ratios are by weight and all ratio ranges are inclusive and combinable. All molar ranges are inclusive and combinable.
The cyclopropenes applicable to this invention are known materials prepared using the processes disclosed in U.S. Pat. Nos. 5,518,988 and 6,017,849. The cyclopropene/molecular encapsulation agent complexes of the present invention are prepared by contacting the cyclopropene with a solution or slurry of the molecular encapsulation agent and then isolating the complex, again using general processes disclosed in U.S. Pat. No. 6,017,849.
It is often desirable to include in the composition of this invention one or more adjuvants, such as, for example, binders, lubricants, release agents, surfactants and/or dispersants, wetting agents, spreading agents, dispersing agents, stickers, adhesives, defoamers, thickeners, and emulsifying agents. Such adjuvants commonly used in the art can be found in the John W. McCutcheon, Inc. publication
Detergents and Emulsifiers, Annual
, Allured Publishing Company, Ridgewood, N.J., U.S.A. One or more of such adjuvants may be added to the composition prior to agglomeration or as a coating onto the agglomerated material. Optionally, adjuvants may be added to the composition at the time the cyclopropene is released as an aid to the releasing process. Preferred adjuvants include; a) binders such as, for example, sucrose, dextrose, dextrins, and other sugars and starches, polymers such as polyvinyl alcohol and lignosulfonates, and inorganics such as clays and salts, b) lubricants such as, for example, talc, magnesium stearate, stearic acid, graphite, and waxes, and c) release agents such as surfactants including, for example, sodium dodecyl sulfate.
A wide variety of pressure agglomeration equipment is available and may be used to agglomerate the composition. These include, for example, presses, granulators, and extruders. Preferred agglomeration equipment are those which are considered high pressure agglomerators such as, for example, pellet presses, tablet p

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Delivery system for cyclopropenes does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Delivery system for cyclopropenes, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Delivery system for cyclopropenes will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2846894

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.