Delivery system and method for expandable intracorporeal device

Prosthesis (i.e. – artificial body members) – parts thereof – or ai – Arterial prosthesis – Stent combined with surgical delivery system

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C606S108000

Reexamination Certificate

active

06602280

ABSTRACT:

BACKGROUND
The present invention relates to a system and method for the treatment of disorders of the vasculature. More specifically, the present invention relates to a system and method for treatment of thoracic or abdominal aortic aneurysm and the like, which is a condition manifested by expansion and weakening of the aorta such conditions require intervention due to severity of the sequelae, which frequently is death. Prior methods of treating aneurysm have consisted of invasive surgical methods with graft placement within the affected vessel as a reinforcing member of the artery. However, such a procedure requires a surgical cut down to access the vessel, which in turn can result in a catastrophic rupture of the aneurysm due to the decreased external pressure from the surrounding organs and tissues, which are moved during the procedure to gain access to the vessel. Accordingly, surgical procedures have a high mortality rate due to the possibility of the rupture discussed above in addition to other factors. Such Other factors can include poor physical condition of the patient due to blood loss, anuria, and low blood pressure associated with the aortic abdominal aneurysm. An example of a surgical procedure is described in a book entitled
Surgical Treatment of Aortic Aneurysms
by Denton A. Cooley, M. D.,published in 1986 by W. B. Saunders Company.
Due to the inherent risks and complexities of surgical procedures, various attempts have been made in the development of alternative methods for deployment of grafts within aortic aneurysms. One such method is the non-invasive technique of percutaneous delivery by a catheter-based system. Such a method is described in Lawrence, Jr. et al. in “Percutaneous endovascular graft: experimental evaluation”,
Radiology
(May 1987). Lawrence describes therein the use of a Gianturco stent as disclosed in U.S. Pat. No. 4,580,568. The stent is used to position a Dacron® fabric graft within the vessel. The Dacron graft is compressed within the catheter and then deployed within the vessel to be treated. A similar procedure has also been described by Mirich et al. in “Percutaneously placed endovascular grafts for Aortic Aneurysms: Feasibility Study,”
Radiology
(March 1989). Mirich describes therein a self-expanding metallic structure covered by a nylon fabric, with said structure being anchored by barbs at the proximal and distal ends.
One of the primary deficiencies of the existing percutaneous devices and methods has been that the grafts and the delivery catheters used to deliver the grafts are relatively large in profile, often up to 24 French and greater, and stiff in bending. The large profile and bending stiffness makes delivery through the irregular and tortuous arteries of diseased vessels difficult and risky. In particular, the iliac arteries are often too narrow or irregular for the passage of a percutaneous device. Because of this, non-invasive percutaneous graft delivery for treatment of aortic aneurysm is not available to many patients who would otherwise benefit from it.
What has been needed is an endovascular graft and delivery system for the graft which has a small outer diameter and high flexibility to facilitate percutaneous delivery in patients who require such treatment. What has also been needed is a delivery system for an endovascular graft which is simple, reliable and can accurately deploy an endovascular graft within a patient's body.
SUMMARY
The invention is directed generally to a catheter for delivery of a variety of expandable intracorporeal devices, specifically, an endovascular graft which can be self expanding. The catheter can have an elongate shaft with a proximal section, a distal section, a proximal end and a distal end. The distal section of the elongate shaft can have a radially expandable shear barrier disposed about an inner space which is configured to accept an expandable intracorporeal device in a collapsed state. The catheter can be used for delivery and deployment of any appropriate expandable intracorporeal device. Typically, the catheter is used to deliver and deploy an expandable endovascular device such as a graft or stent graft. An outer radially constraining section is disposed about and radially constraining at least a portion of the radially expandable shear barrier and is capable of axial movement relative to the radially expandable shear barrier so as to controllably remove the radial constraint and allow the expandable intracorporeal device to deploy. Typically, the catheter is configured for percutaneous delivery from outside a patient to a desired site within a patient's body through an intracorporeal conduit or tissue of the patient.
In one embodiment, the radially expandable shear barrier and the outer radially constraining section are mechanically coupled to at least one terminal member disposed at the proximal end of the elongate shaft such that relative axial movement of the radially expandable shear barrier and outer radially constraining section can be carried out by an operator manipulating the terminal member at the proximal end of the elongate shaft. An actuator can be mechanically coupled to the at least one terminal member such that controllable and automatic relative axial movement between the radially expandable shear barrier and outer radially constraining section of the distal section of the elongate shaft can be carried out by activation of the actuator.
In another embodiment, the radially expandable shear barrier is in the form of a slitted inner tubular section having a generally tubular configuration and a distal end with at least one longitudinal slit extending proximally from the distal end. The slitted inner tubular member has an inner lumen disposed within it which is configured to accept at least a portion of an expandable intracorporeal device in a collapsed state. An outer tubular section is disposed about and radially constrains at least a portion of the slitted inner tubular section. The outer tubular section is capable of axial movement relative to the slitted inner tubular section in order to remove the radial constraint and allow the expandable intracorporeal device to deploy. The slitted inner tubular section and the outer tubular section can be mechanically coupled to at least one terminal member disposed at the proximal end of the elongate shaft such that relative movement of the inner and outer tubular sections can be carried out by an operator manipulating the at least one terminal member at the proximal end of the elongate shaft. Alternatively, the slitted inner tubular section can be mechanically coupled to a first terminal member consisting of a proximal handle disposed at the proximal end of the elongate shaft. The outer tubular section can be mechanically coupled to a second terminal member consisting of a distal handle disposed at the proximal end of the elongate shaft. Relative movement between the slitted inner tubular section and the outer tubular section can be carried out by imparting relative axial movement on the proximal and distal handles.
In yet another embodiment, a guidewire tube is disposed within the inner lumen of the slitted inner tubular section and has an inner guidewire lumen, a proximal end, a distal end and a distal section. A distally tapered nose piece can be disposed about and secured to the distal section of the guidewire tube. Optionally, the nosepiece disposed about a distal section of the guidewire tube can have a distal end with a contoured distally tapered bullet shape. The nosepiece can have a proximal end which is configured to engage the inner lumen of the distal end of the outer tubular section and produce a substantially smooth outer surface at the junction between the distal end of the outer tubular section and the nose piece.
The invention is also directed to a method for deploying an expandable intracorporeal device within a patient's body. A catheter system suitable for use with the method has an elongate shaft having a proximal section, a distal section, a proximal end and a distal end. Th

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Delivery system and method for expandable intracorporeal device does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Delivery system and method for expandable intracorporeal device, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Delivery system and method for expandable intracorporeal device will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3104194

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.