Delivery of bioactive compounds to an organism

Drug – bio-affecting and body treating compositions – Whole live micro-organism – cell – or virus containing – Genetically modified micro-organism – cell – or virus

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C435S325000, C435S366000, C435S373000, C435S391000, C623S023720, C623S915000

Reexamination Certificate

active

06503504

ABSTRACT:

BACKGROUND OF THE INVENTION
This invention relates to the delivery of bioactive compounds to an organism, and in particular to methods and apparatus for the delivery of bioactive compounds by implanting into the organism an organized tissue producing the compounds.
One of the primary therapies used to treat disease is the delivery of bioactive compounds to the affected organism. Bioactive compounds may be delivered systemically or locally by a wide variety of methods. For example, an exogenous source (i.e., produced outside the organism treated) of the bioactive compound may be provided intermittently by repeated doses. The route of administration may include oral consumption, injection, or tissue absorption via topical compositions, suppositories, inhalants, or the like. Exogenous sources of the bioactive compound may also be provided continuously over a defined time period. For example, delivery systems such as pumps, time-released compositions, or the like may be implanted into the organism on a semi-permanent basis for the administration of bioactive compounds (e.g., insulin, estrogen, progesterone, etc.).
The delivery of bioactive compounds from an endogenous source (i.e., produced within the organism treated) has also been attempted. Traditionally, this was accomplished by transplanting, from another organism, an organ or tissue whose normal physiological function was the production of the bioactive compound (e.g., liver transplantation, kidney transplantation, or the like). More recently, endogenous production by cells of the affected organism has been accomplished by inserting into the cells a DNA sequence which mediates the production of the bioactive compound. Commonly known as gene therapy, this method includes inserting the DNA sequence into the cells of the organism in vivo. The DNA sequence persists either transiently or permanently as an extra-chromosomal vector (e.g., when inserted by adenovirus infection or by direct injection of a plasmid) or integrates into the host cell genome (e.g., when inserted by retrovirus infection). Alternatively, the DNA sequence may be inserted into cells of the host tissue or an another organism in vitro, and the cells subsequently transplanted into the organism to be treated.
SUMMARY OF THE INVENTION
In general, the invention features a method of delivering a bioactive compound to an organism. The method includes the steps of growing a plurality of cells in vitro under conditions that allow the formation of an organized tissue, at least a subset of the cells containing a foreign DNA sequence which mediates the production of the bioactive compound, and implanting the cells into the organism, whereby the bioactive compound is produced and delivered to the organism.
In a preferred embodiment of this method, the step of growing may include mixing the cells with a solution of extracellular matrix components to create a suspension, placing the suspension in a vessel having a three-dimensional geometry approximating the in vivo gross morphology of the tissue and having tissue attachments surfaces thereon, allowing the suspension to coalesce, and culturing the coalesced suspension under conditions in which the cells connect to the attachment surfaces and form a tissue having an in vivo-like gross and cellular morphology.
In other preferred embodiments, the DNA sequence encodes the bioactive compound; the DNA sequence encodes a protein which mediates the production of the bioactive compound (for example, by regulating its expression or encoding an intermediate to the bioactive compound); the DNA sequence mediates the production of two bioactive compounds; the tissue includes skeletal muscle; the tissue includes myotubes; the bioactive compound is a growth factor (for example, human growth hormone); the bioactive compound is a bone morphogenetic protein; the bone morphogenetic protein is BMP-6; the organized tissue is implanted into the tissue of origin of at least one of the cells; the cells include a first and a second population of cells, at least a subset of each of the populations containing a foreign DNA sequence which mediates the production of a bioactive compound; the foreign DNA sequence of the first population mediates the production of a bioactive compound different from the foreign DNA sequence of the second population; and the foreign DNA sequence of the first population encodes a bone morphogenetic protein and the foreign DNA sequence of the second population includes a parathyroid hormone.
In other preferred embodiments, the method includes: the step of removing the organized tissue from the organism to terminate delivery of the bioactive compound; following the removal step, the step of culturing the organized tissue in vitro under conditions which preserve its in vivo viability; following the culturing step, the step of reimplanting the organized tissue into the organism to deliver the bioactive compound to the organism; the step of isolating primary cell types of at least one of the cell types of the tissue; and the step of utilizing immortalized cells of at least one of the cell types of the tissue.
In other preferred embodiments of this method, the tissue comprises substantially post-mitotic cells; during the growing step, a force is exerted substantially parallel to a dimension of the tissue; the force is exerted on the individual cells during growth in vitro and on the organized tissue during implantation in vivo; the coalesced suspension exerts a force on the cells substantially parallel to a dimension of the vessel; the cells are aligned substantially parallel to a dimension of the vessel; the vessel is substantially semi-cylindrical in shape; the attachment surfaces are positioned at opposite ends of the vessel; the alignment is mediated by forces exerted by the coalesced suspension; the cells comprise myotubes; the organism is a mammal; and the mammal is a human.
In a related aspect, the invention features an organized tissue producing a bioactive compound, the tissue is produced by the steps of mixing a plurality of cells with a solution of extracellular matrix components to create a suspension, at least a subset of the cells containing a foreign DNA sequence which mediates the production of a bioactive compound; placing the suspension in a vessel having a three dimensional geometry approximating the in vivo gross morphology of the tissue, the vessel having attachment surfaces thereon; allowing the suspension to coalesce; and culturing the coalesced suspension under conditions in which the cells connect to the attachment surfaces and form a tissue having an in vivo-like gross and cellular morphology.
In a related aspect, the invention features an organized tissue producing a bioactive compound. The organized tissue includes a plurality of cells, grown in vitro under conditions that allow the formation of an organized tissue, and a foreign DNA sequence mediating the production of a bioactive compound. The DNA sequence is inserted into at least a subset of the cells. Also included in the invention are organized tissues producing a bioactive compound, the tissue being produced by any of the methods described herein.
In preferred embodiments, the organized tissue is skeletal muscle.
In a related aspect, the invention features an in vitro method for producing a tissue having an in vivo-like gross and cellular morphology. The method includes providing precursor cells of the tissue; mixing the cells with a solution of extracellular matrix components to create a suspension; placing the suspension in a vessel having a three-dimensional geometry approximating the in vivo gross morphology of the tissue, the vessel having tissue attachment surfaces thereon; allowing the suspension to coalesce; and culturing the cells under conditions in which the cells form an organized tissue connected to the attachment surfaces.
In preferred embodiments of this method, the step of providing includes isolating primary cells of at least one of the cell types which make up the tissue or includes utilizing immortalized cells of at least one

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Delivery of bioactive compounds to an organism does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Delivery of bioactive compounds to an organism, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Delivery of bioactive compounds to an organism will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3037888

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.