Sheet feeding or delivering – Delivering – With transfer means between conveyor and receiver
Reexamination Certificate
2002-03-28
2003-12-09
Walsh, Donald P. (Department: 3653)
Sheet feeding or delivering
Delivering
With transfer means between conveyor and receiver
C271S204000, C271S280000, C271S300000
Reexamination Certificate
active
06659453
ABSTRACT:
BACKGROUND OF THE INVENTION
Field of the Invention
The invention relates to a delivery for a machine processing flat printing materials, in particular, a sheet-processing rotary printing machine. The printing machine has gripper systems that circulate during operation, drag a respective one of the processed sheets in a transport direction along a transport path, and optionally release it at a first location on the transport path to form a stack or a second location on the transport path, placed downstream of the first location with respect to the transport direction. The machine also has a suction belt conveyor with suction belt modules that include conveyor runs that, during operation, run off a respective first roller and run onto a respective second roller, disposed downstream of the first roller with respect to the transport direction, a support surface formed by the conveyor runs for one of the sheets released at the second location, and mutually parallel generatrices of the transport path and of the support surface.
Such a delivery suitable for removing rejects and proof sheets is disclosed by German Patent DE 195 19 374 C2, corresponding to U.S. Pat. No. 5,649,483 to Mack et al. As a result of the attempt to keep the extent of the delivery in the transport direction as small as possible beyond the stack, the gripper systems that normally run horizontally above the stack change over into a deflection area, in which they are removed from the suction belt conveyor, possibly already before, but at least immediately after the sheets have been released at the aforementioned second location on the transport path. However, secure picking up of the sheets by the suction belt conveyor requires a leading end of the respective sheet released at the second location already to be gripped by the suction belt conveyor under the suction action of the latter. To ensure security of the process, that is to say, the secure picking up of the processed printing materials, strict compliance with a specific mutual association between the transport path and the support surface is necessary. An erroneous mutual association, forming too large a gap between the sheets released at the second location and the support surface formed by the conveyor runs of the suction belt conveyor, results in the sheets not being able to be picked up by the conveyor runs because an adequate suction action effective on a respective sheet is built up by the suction belt conveyor only in the immediate vicinity of the support surface and also only when the respective sheet is located in the immediate vicinity of the support surface.
The process of transferring the leading ends of the sheets from a gripper system to the suction belt conveyor is extremely sensitive to deviations from a specific mutual association between suction belt conveyors and gripper systems, so that even an unfavorable coincidence of production tolerances can lead to disruptions of the process.
SUMMARY OF THE INVENTION
It is accordingly an object of the invention to provide a delivery for a machine processing flat printing materials that overcomes the hereinafore-mentioned disadvantages of the heretofore-known devices of this general type and that configures the delivery to ensure security of the aforementioned process.
With the foregoing and other objects in view, there is provided, in accordance with the invention, a delivery for a machine processing flat printing materials in a transport direction along a transport path, the transport path defining a transport generatrix, the delivery including circulating gripper systems each dragging a printing material in the transport direction along the transport path during operation of the machine and selectively releasing the printing material at one of a first location on the transport path to form a material stack or a second location on the transport path downstream of the first location with respect to the transport direction, a suction belt conveyer with suction belt modules each having a first roller, a second roller disposed downstream of the first roller with respect to the transport direction, and a conveying run connected to the first roller and to the second rollers and running from the first roller to the second roller during operation of the machine, the conveying run of each of the suction belt modules forming a variable support surface for a printing material released at the second location, the variable support surface defining a support generatrix oriented parallel to the transport generatrix of the transport path, and a physical position of the support surface being variable while maintaining an orientation of the support generatrix. Preferably, the delivery is for a sheet-processing rotary printing machine and the printing material is a sheet.
In order to achieve this object, provision is made for the physical position of the support surface to be variable while maintaining the orientation of its generatrix.
As a result of this measure, that is to say, in particular, as a result of appropriate adjustment of the support surface, a secure process association between the support surface and the transport path and, therefore, a secure transfer can be brought about, without increased requirements on minimization of production tolerances having to be met. Moreover, the configuration according to the invention also permits the physical position of the support surface to be matched to printing materials having different thicknesses.
In accordance with another feature of the invention, the suction belt conveyer has a geometric axis parallel to the transport generatrix of the transport path and the suction belt conveyer is selectively adjustable to different working positions by pivoting about the geometric axis.
In accordance with a further feature of the invention, the machine has a frame, and the delivery includes a crossmember defining the geometric axis, pivotably mounted in the frame about the geometric axis, selectively adjustable to different pivoting positions, and carrying the suction belt conveyer. in accordance with an added feature of the invention, there is provided an actuating drive connected to the crossmember and pivoting the crossmember about the geometric axis.
In accordance with an additional feature of the invention, there is provided a swinging arm connected to the crossmember and a mechanism having two sides, a first of the sides connected to the frame and a second of the sides connected to the swinging arm, the connection of the swinging arm to the second side forming a pivot mechanism for the crossmember about the geometric axis.
In accordance with yet another feature of the invention, there is provided a pivot mechanism having two sides, a first of the sides connected to the frame and a second of the sides connected to the swinging arm for pivoting the crossmember about the geometric axis.
In accordance with yet a further feature of the invention, the mechanism is a screw device and includes a threaded spindle and a spindle nut configuration moveably connected to the threaded spindle. Preferably, the spindle nut configuration is rotatably connected to the threaded spindle without play.
In accordance with yet an added feature of the invention, the mechanism has a spindle housing connected to the frame, the spindle housing accommodates the threaded spindle to axially fix the threaded spindle and permit rotation of the threaded spindle, and the spindle nut configuration is connected articulatedly to the swinging arm.
In accordance with yet an additional feature of the invention, the mechanism is adjustable between a plurality of latching positions.
In accordance with again another feature of the invention, the suction belt modules are adjustable between a working position and a position located away from the working position, a locking device releasably fixes each of the suction belt modules in the working position, and the locking device releases a respective one of the suction belt modules from the working position through a transverse force loading the conveying run of
Angert Roland
Gögele Peter Wilhelm
Kelm Carsten
Lautenklos Udo
Thünker Norbert
Greenberg Laurence A.
Heidelberger Druckmaschinen AG
Joerger Kaitlin
Locher Ralph E.
Stemer Werner H.
LandOfFree
Delivery for a machine processing flat printing materials does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Delivery for a machine processing flat printing materials, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Delivery for a machine processing flat printing materials will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3123242