Delivery and acquisition of data segments with optimized...

Electrical computers and digital processing systems: multicomput – Computer-to-computer protocol implementing – Computer-to-computer data transfer regulating

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C709S236000, C709S231000, C341S081000, C348S014160

Reexamination Certificate

active

06173330

ABSTRACT:

BACKGROUND OF THE INVENTION
The present invention relates to the transmission of data segments such as those used to provide data to receivers for producing an on-screen television programming guide. In particular, a method and apparatus are presented for allowing a receiver to acquire data segments from a data stream at a lower data rate than the nominal data rate of the data stream while also optimizing the response time of the receiver.
Recently, the availability of various video and other programming services for consumers and others has increased. Consumers may receive programming services via cable, terrestrial broadcast, and direct broadcast satellite links. Available programming services include traditional programs provided by national network broadcasters, various special interest programs which cater to those with a special interest in news, politics, sports, nature, movies, weather, history, shopping and the like, and local community programming. Additionally, audio and data programming services are becoming increasingly popular. Audio services provide musical programming or alternative language capability, and data programming provides information such as stock prices, travel and shopping information, and the like. Furthermore, it is expected that traditional television programming services will be integrated with computer-based services to provide even more services from which the viewer may select.
Accordingly, there is a need to inform the viewer of the myriad available programming options in an easy to use format. Various on-screen graphical displays have become available that provide information such as program name, viewing time, and a description, such as the leading actor in a movie. For example, a common display format lists the relevant programming information for a given time period, such as one or two days from the present time. Additionally, the display may provide interactive features, for example, which allow the viewer to switch the channel to directly view a program, order a pay-per-view program, record a program, obtain additional information about a program, such as a detailed movie review, or obtain account information from the programming service provider. Such an on-screen display is known as an interactive program guide (IPG).
Moreover, data for updating the IPG may be transmitted over the same channel as the programming service. One such system for providing IPG data is described in U.S. Pat. No. 5,801,753, issued Sep. 1, 1998 by M. Eyer and Z. Guo, entitled “Method and Apparatus for Providing an Interactive Guide to Events Available on an Information Network,” assigned to General Instrument Corporation, the assignee of the present invention, and incorporated herein by reference. In this system, IPG data for a shorter time period (e.g., the next two days) of programming is continuously transmitted in a low rate, “trickle” data stream, while data for a longer time period (e.g., the next seven days) of programming is continuously transmitted at a higher rate in a “demand” data stream. The trickle data stream is automatically received and processed by the receiver to gradually update the display with current information such as last-minute programming changes or corrections in the schedule. The trickle data stream thus provides a continuous update capability while requiring the receiver to store only the data corresponding to two days of programming.
In contrast, the receiver will not acquire and process the high-rate demand data stream unless commanded to do so by the viewer. For example, this may be required when the viewer wishes to obtain information for programming which is scheduled for more than two days in the future. Furthermore, when the viewer commands a function that requires the demand data stream, it is desirable for the information to be retrieved and processed as quickly as possible to avoid inconvenient delays for the viewer.
However, with mass-produced receivers, the data input buffer size and processing speed are limited. Additionally, different viewers will be requesting different portions of the IPG at any given time. Accordingly, it would be desirable to provide a method and apparatus for communicating data to receivers that provides a fast response time without exceeding the receiver's processing capability or overflowing the receiver's buffer. Additionally, the system should be compatible with a data stream protocol wherein data for a single graphical display, or page, is carried in a number of blocks and segments, and where a number of receivers may require data of different blocks or segments of the data stream at the same time. Furthermore, there should be a relatively even waiting time between different viewers who request different information at the same time. The present invention provides a data communication scheme having the above and other advantages.
SUMMARY OF THE INVENTION
In accordance with the present invention, a method and apparatus are presented for allowing a receiver to acquire data segments from a data stream at a lower data rate than the nominal data rate of the data stream while also minimizing the response time of the receiver. The invention is particularly applicable to the communication of interactive program guide (IPG) data for informing television viewers of the available programming services in a particular time period.
A method for communicating pages of data of a transmission cycle over a communication channel includes the step of arranging the pages in a first page order. In particular, the pages may be arranged sequentially, or the even-numbered pages may be separated from the odd-numbered pages. Next, the pages are partitioned into a number of subsets.
Each page includes a number of data segments which are arranged in a first segment order. Next, the data segments are re-arranged according to a perfect shuffle function to provide the segments in an order to achieve an optimal inter-segment distance. This optimal inter-segment distance corresponds to an order that maximizes a minimum of the inter-segment distance of respective segments which were adjacent in the first segment order. Moreover, the minimum inter-segment distance is constrained by the maximum speed with which the receiver can receive and process data. Typically, this speed is limited by the size of the receiver's input buffer and the operating speed of the processor. Any dummy segments which are present in the data pages may be removed after this re-arranging.
Furthermore, the pages may include different types of blocks. Each block is a grouping of segments. In this case, the different types of blocks may be arranged in a first transmission cycle and subsequent transmission cycles which follow such that the different types of blocks are provided at a desired relative frequency. For example, data blocks which have a higher priority may be provided at a higher relative frequency in the transmission cycles. In this way, in case the data stream is temporarily lost, the time for re-acquiring the data stream can be reduced.
A corresponding apparatus is also presented.
A receiver is also presented for processing a data stream which includes a plurality of data pages. The receiver includes means for retrieving particular segments of the pages. For example, a particular IPG page may be divided into five segments, and the receiver will accumulate the segments one by one until it has accumulated all five segments and is able to process the data and reproduce the desired image on a television screen. The segments in the data stream are processed in accordance with the perfect shuffle function to achieve an optimal inter-segment distance in the data stream. In particular, the segments are provided in an order which maximizes a minimum of the inter-segment distance of respective segments which were adjacent prior to being processed in accordance with the perfect shuffle function.
The receiver further includes an input buffer which has a characteristic capacity for receiving the data stream. That is, the buffer may only

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Delivery and acquisition of data segments with optimized... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Delivery and acquisition of data segments with optimized..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Delivery and acquisition of data segments with optimized... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2522283

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.