Tool driving or impacting – Impacting devices – Hammer head constitutes piston of drive motor
Reexamination Certificate
2001-08-31
2003-02-25
Smith, Scott A. (Department: 3721)
Tool driving or impacting
Impacting devices
Hammer head constitutes piston of drive motor
C173S168000, C173S169000
Reexamination Certificate
active
06523621
ABSTRACT:
FIELD OF THE INVENTION
The present invention relates generally to pneumatically operated fastener-driving tools, and more particularly to a new and improved separate and independent in-line connector device which is adapted to be operatively interposed between the fastener-driving tool air inlet supply hose and the fastener-driving tool air hose connection tap or fitting so as to permit incoming supply air to be fluidically conducted into the tool when the tool is disposed in an operative condition or state, however, the device will terminate the flow of the incoming supply air to the tool if the tool has not been disposed in an operative firing condition or state for a predetermined period of time.
BACKGROUND OF THE INVENTION
As is well known in the art, fastener-driving tools can be operated in any one of several different operational modes. It is also well-known in the industry that such fastener-driving tools are normally equipped with a safety mechanism, or a control circuit or system, by means of which the tool normally cannot be fired unless both the trigger mechanism is activated or depressed and simultaneously therewith, the nosepiece, for example, of the tool is forcefully depressed against the workpiece or substrate into which a fastener is to be driven so as to effectively cause the safety device or mechanism of the tool to be moved thereby permitting firing of the tool. One commonly known and practiced mode of operation comprises a bump-firing mode of operation wherein, for example, the operator maintains the trigger mechanism of the tool constantly activated or depressed, and subsequently, each time the nosepiece of the tool is forcefully engaged and depressed against the workpiece or substrate into which a fastener is to be driven, the tool is able to be fired. Consequently, a bump-firing mode of operation enables an operator to rapidly fire the tool and thereby install a large number of fasteners within a relatively short period time.
Despite the aforenoted attempt to render such fastener-driving tools safe by incorporating therein the noted safety device or mechanism requiring the simultaneous activation or depression of the trigger mechanism of the tool and the forceful engagement or depression of the nosepiece of the tool against the workpiece or substrate into which the fasteners are to be driven, it has been realized that such fastener-driving tools can nevertheless constitute a safety hazard and create an operationally dangerous environment. For example, it has been realized that if an operator maintains the trigger mechanism of the fastener-driving tool constantly activated or depressed, and simultaneously therewith, accidentally or inadvertently causes the nosepiece of the tool to be engaged or depressed as a result of coming into contact with some object other than, for example, the desired workpiece or substrate, the tool is in fact enabled and can accordingly fire whereby the accidentally or inadvertently discharged fastener obviously presents a safety hazard and a dangerous environment to the tool operator and other personnel who may be within the immediate vicinity of the tool. Accordingly, still further, such fastener-driving tools of the aforenoted type have had additional safety devices, mechanisms, or systems incorporated therein in an attempt to effectively prevent the firing of the tool under the aforenoted accidental or inadvertent conditions, however, such additional safety devices, mechanisms, or systems have been quite elaborate and complex, and have added significant production costs to the tool fabrication or manufacturing operations.
A need therefore exists in the art for a new and improved safety device or mechanism which can be operatively associated with a pneumatically-powered fastener-driving tool so as to effectively prevent the tool from being accidentally or inadvertently operated, and yet readily permit the intentionally desired operation of the tool in a relatively simplistic manner. In addition, the new and improved safety device or mechanism should be capable of being operatively associated with the pneumatically-powered fastener-driving tool without necessarily being integrally incorporated within the tool so as not to render the same elaborate and operationally complex, and accordingly, not to render the resulting cost of the fastener-driving tools prohibitively expensive.
OBJECTS OF THE INVENTION
Accordingly, it is an object of the present invention to provide a new and improved safety device or mechanism which can be operatively associated with a pneumatically-powered fastener-driving tool so as to effectively prevent the tool from being accidentally or inadvertently operated.
Another object of the present invention is to provide a new and improved safety device or mechanism which can be operatively associated with a pneumatically-powered fastener-driving tool so as to effectively prevent the tool from being accidentally or inadvertently operated while at the same time effectively overcoming the various operational and economic drawbacks characteristic of PRIOR ART devices and tools.
An additional object of the present invention is to provide a new and improved safety device or mechanism which can be operatively associated with a pneumatically-powered fastener-driving tool so as to effectively prevent the tool from being accidentally or inadvertently operated and yet not necessarily be integrally incorporated within the tool so as not to render the tool elaborate and operationally complex.
A further object of the present invention is to provide a new and improved safety device or mechanism which can be operatively associated with a pneumatically-powered fastener-driving tool so as to effectively prevent the tool from being accidentally or inadvertently operated and yet may be integrally attached to the fastener-driving tool as an adjunct whereby the resulting tool nevertheless remains operationally simple.
A last object of the present invention is to provide a new and improved safety device or mechanism which can be operatively associated with a pneumatically-powered fastener-driving tool so as to effectively prevent the tool from being accidentally or inadvertently operated and yet is a relatively adjunct to the tool so as not to significantly enhance the fabrication or manufacturing costs of the tool.
SUMMARY OF THE INVENTION
The foregoing and other objectives are achieved in accordance with the teachings and principles of the present invention through the provision of a new and improved safety device or mechanism which can be operatively associated with a pneumatically-powered fastener-driving tool and which comprises in effect a connector device or mechanism which can be quickly operationally and fluidically interposed and connected between the air supply hose for the tool and the fitting or tap integrally provided or incorporated upon the tool by means of conventional quick connect/disconnect fittings. The connector has a fluidic flow path defined internally within the connector housing, and a valve member operatively controls the fluidic communication between the air supply hose and the tool air fitting. The valve member is operatively connected to a manual ring actuator assembly mounted upon the connector housing and is initially moved to its OPEN position when the manual ring actuator assembly is manually moved away from the air supply hose, and is spring-biased toward its CLOSED position against the operative resistance of an internally housed hydraulic fluid. Alternatively, the valve member may be pneumatically biased toward the CLOSED position. In either case, the closure of the valve member is effectively controlled in a predeterminedly timed manner.
In order to maintain the valve member at the OPEN position, the exhaust, generated within the tool as a result of each fastener-firing operational cycle, is routed from an exhaust port of the tool to the connector so as to act upon a piston member operatively connected to the valve member. Accordingly, unless the tool is subsequently fired within a predetermine
Gosis Anatoly
Monje Aaron V.
Velan G. Michael
Illinois Tool Works Inc.
Nathaniel Chukwurah
Schwartz & Weinrieb
Smith Scott A.
LandOfFree
Delay-interruption connector for pneumatic tool does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Delay-interruption connector for pneumatic tool, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Delay-interruption connector for pneumatic tool will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3166493