Deinterlacing technique

Television – Format conversion – Line doublers type

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C348S441000

Reexamination Certificate

active

06188437

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates to deinterlacing of video data and, in particular, to an improved deinterlacing (line-doubling) technique.
BACKGROUND OF THE INVENTION
Video is generally represented as sequences of frames in accordance with either the interlaced or the progressively-scanned format (non-interlaced). Each frame includes a matrix of pixels that vary in color and intensity according to the image displayed.
Referring to
FIG. 1
, in the interlaced scan format, a frame, which is a raster array of image bytes representing an image, includes a pair of fields, in which a field is a raster array of image bytes representing every other row of a frame and are derived from two different instants. The primary field of the pair of fields, for example, is the input field associated with the time instant for which the output frame is to be constructed and includes pixels that are located only on alternate rows (either odd or even rows) of the frame matrix, called horizontal lines. The secondary field includes pixels that are located on the corresponding horizontal lines of the frame matrix which are the missing pixels in the primary field. The pixels in the secondary field represent the portions of the image not represented in the primary field. The primary and secondary fields of a frame are scanned consecutively, for example, on a video display monitor at a rate of 60 fields/sec for purposes of reconstructing the entire image on the display at the industry interlaced scan standard 30 frames/sec display rate.
In the progressively scanned format, an image is represented in its entirety using only a single field that includes pixels in all horizontal lines of the frame matrix. Therefore, such frames can be progressively scanned on a display at the standardized progressive display rate of 60 frames/sec.
Conventional television systems receive frames of video signals in an interlaced format. For example, the National Television System Committee (NTSC) standard is used to send and receive frames of television signals at a rate of 30 frames/second. Each frame contains 525 lines of video scan lines, which are divided into two interlaced fields. The interlaced fields are transmitted at a rate of 60 fields/second, or 30 frames/second. The receiver scans the two interlace fields of each frame, one by one, to display the interlaced video signals as television pictures.
Several video applications also use interlace scanning during image origination or capture as well as during signal transmission from the encoder, which codes the video signal, to the receiver. For example, digital video compression methods, such as the ISO (International Standards Organization) MPEG (Moving Pictures Expert Group) video compression standard, may be used to reduce the data rate to a level suitable for transmission over an available digital channel.
However, the display for these digitally compressed video image sequences at the decoders may not use interlaced scanning, or it may be desirable to use non-interlaced displays. For example, in large screen television displays, multimedia displays, or computer displays that support many text-oriented or graphics-oriented applications, a non-interlaced format is often preferred over an interlaced format for a variety of reasons, such as the lower costs associated with implementing the progressively scanned format technology.
Thus, there is a need to convert an interlaced format to a non-interlaced format. The process of converting an interlaced format to a non-interlaced format is generally referred to as deinterlacing (or line-doubling). Referring to
FIG. 1
, each pair of pixels, e.g. pixels
101
and
102
, contains four 8-bit values. The four values include two luminance values, one Red-chroma (Cr) value and one Blue-chroma (Cb) value. Deinterlacing involves comparing these four values in the primary field with their respective values in the secondary field and deinterlacing the values independently of each other. Deinterlacing can be used to convert interlaced still pictures to non-interlaced still pictures, or to provide display of interlaced video on a progressive display (non-interlaced) computer monitor.
Several techniques for deinterlacing a sequence of frames in the interlaced scan format have been developed to provide images to be displayed on the higher image quality, progressively scanned format display equipment. A simple technique is to merge the odd and even fields. However, this technique causes spatial artifacts. Other conventional deinterlacing techniques utilize fixed numerical thresholds to adapt to changing image content between fields (i.e., to minimize spatial artifacts) or utilize computationally intensive approaches, such as contour deinterlacing or spatio-temporal deinterlacing interpolation for estimating the values of missing pixels in an interlaced frame.
BRIEF SUMMARY OF THE INVENTION
The present invention provides an improved deinterlacing technique that reconstructs regions of an image that change monotonically in the vertical direction (i.e., vertical deinterlacing). The present invention adapts to the image content without using fixed numerical thresholds or spatio-temporal interpolation techniques. Rather, deinterlacing in accordance with the teachings of the present invention uses, for example, three localized input pixel values to produce an output pixel value that minimizes spatial artifacts (i.e., accurately reconstructs regions that change monotonically in the vertical direction). Thus, the present invention provides a higher quality and more computationally efficient deinterlacing technique than the conventional deinterlacing techniques. The deinterlacing technique of the present invention adapts to image content and is noise tolerant (i.e., small deviations in the input pixel value produce only small changes in the output pixel value). For example, the present invention can provide an efficient deinterlacing implementation for a computer that includes, for example a SIMD architecture based microprocessor or the well known INTEL PENTIUM MMX microprocessor.
In one embodiment, a method for deinterlacing includes receiving an interlaced frame of data, the frame including a primary field and a secondary field, and deinterlacing the frame, the deinterlacing including computing an output pixel, PIXOUT, of the secondary field based on an input pixel, PIXIN, of the secondary field, a bottom pixel, BOTTOM, of the primary field, and a top pixel, TOP, of the primary field, in which PIXOUT is computed according to an input/output curve that converges to an average of BOTTOM and TOP.
In one embodiment, the deinterlacing method further includes setting a value MIN equal to a minimum of TOP and BOTTOM, setting a value MAX equal to a maximum of TOP and BOTTOM, setting a value AVG equal to the average of TOP and BOTTOM, setting a slope from MIN, SMN, equal to MIN+MIN+(−PIXIN), and setting a slope from MAX, SMX, equal to MAX+MAX+(−PIXIN), setting a first bound, BND
1
, equal to SMN if SMN is less than AVG, setting the BND
1
equal to AVG if SMN is not less than AVG (that is, is greater than or equal to AVG), setting a second bound, BND
2
, equal to SMX if SMX is greater than AVG, and setting BND
2
equal to AVG if SMX is not greater than AVG (that is, is less than or equal to AVG). The deinterlacing method also includes setting PIXOUT equal to BND
1
if PIXIN is less than MIN, setting PIXOUT equal to PIXIN if PIXIN is less than MAX and PIXIN is not less than MIN, and setting PIXOUT equal to BND
2
if PIXIN is not less than MAX. The method includes merging computed pixels of the secondary field with input pixels of the primary field to provide a deinterlaced frame based on the interlaced frame data. Accordingly, the deinterlacing method of the present invention generates each output pixel value from only three input pixels. The deinterlacing method is computationally efficient and minimizes spatial artifacts.


REFERENCES:
patent: 4472732 (1984-09-01), Bennett et al.
patent: 4631750 (198

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Deinterlacing technique does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Deinterlacing technique, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Deinterlacing technique will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2603323

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.