Synthetic resins or natural rubbers -- part of the class 520 ser – Synthetic resins – Processes of preparing a desired or intentional composition...
Reexamination Certificate
2001-03-08
2003-01-21
Cain, Edward J. (Department: 1714)
Synthetic resins or natural rubbers -- part of the class 520 ser
Synthetic resins
Processes of preparing a desired or intentional composition...
C523S435000, C523S437000, C525S093000
Reexamination Certificate
active
06509395
ABSTRACT:
FIELD OF THE INVENTION
This invention relates to hydrophobic pigment dispersants, to compositions containing them, and to compounds for defoaming them.
BACKGROUND OF THE INVENTION
Pigment dispersants, especially hydrophobic pigment dispersants, are known to both generate and stabilize large quantities of foam when added to aqueous compositions containing pigments.
This foaming propensity is highly disadvantageous, and is particularly troublesome when the dispersants are used to disperse pigments present in water-based paints.
SUMMARY OF THE INVENTION
This invention relates to aqueous-based compositions containing pigments and pigment dispersants, and more particularly to compositions containing pigment dispersants, especially hydrophobic pigment dispersants, and a branched polymer as a defoaming agent.
The branched polymers used in the above compositions are the reaction products of a linking agent defined by formula (I):
R(Y)
3
(I)
wherein each Y group is a halogen atom or one Y group is a halogen atom and two Y groups together represent an epoxy oxygen atom, which is attached to two adjacent carbon atoms in the R group to form an epoxy group, and R is an alkanetriyl group containing from 3 to 10 carbon atoms, the preferred linking agent being epichlorohydrin; and at least one compound having the formula (II)
R
1
X(EO)
n
(PO)
m
(BO)
p
Z (II)
wherein R
1
is a substituted or unsubstituted, saturated or unsaturated, organic group having from 4 to 36 carbon atoms; x is —O—, —S—, or —NR
2
—where R
2
is hydrogen or a C
1
-C
4
alkyl group; Z is hydrogen, —NHR
2
in place of a terminal —O— group wherein R
2
has the meaning given above, or —SH, in which the —SH group is present in place of a terminal —O— group; n is a number of from 0 to 100, e.g., from 1 to 100; m is a number of from 0 to 50 e.g., from 1 to 50; and p is a number of from 0 to 50 e.g., from 1 to 50; provided that the sum of n, m, and p is at least 1;
wherein EO represents the residue of ethylene oxide, PO represents the residue of propylene oxide, and BO represents the residue of butylene oxide; and wherein the EO, PO and BO groups when present can be in random and/or block distribution and can be in any order with respect to the X group. When the term “branched polymer” is used herein it is to be understood to refer to one or more of the above reaction products.
DESCRIPTION OF THE PREFERRED EMBODIMENTS
Other than in the operating examples, or where otherwise indicated, all numbers expressing quantities of ingredients or reaction conditions used herein are to be understood as modified in all instances by the term “about”. Also, throughout this description, unless expressly stated to the contrary; percent, “parts” of, and ratio values are by weight; the description of a group or class of materials as suitable or preferred for a given purpose in connection with the invention implies that mixtures of any two or more of the members of the group or class are equally suitable or preferred; description of constituents in chemical terms refers to the constituents at the time of addition to any combination specified in the description or of generation in situ by chemical reactions specified in the description, and does not necessarily preclude other chemical interactions among the constituents of a mixture once mixed.
In the branched polymers used in the practice of the invention, in the formula II reactant, formula II compounds wherein the sum of n, m, and p is at least 2, especially at least 3, are preferred. Examples of R
1
groups include substituted or unsubstituted alkyl groups having from 4 to 36 carbon atoms, preferably from 4 to 22 carbon atoms, alkenyl and alkynyl groups having from 4 to 36 carbon atoms, preferably from 4 to 22 carbon atoms, aryl groups having from 6 to 26 carbon atoms, and arenyl groups having from 7 to 36 carbon atoms. When the above groups are substituted groups, the groups can contain single or multiple substitutions such as a halogen substitution, for example CI, FI, I and Br. a sulfur functionality such as a mercaptan or thio group; a nitrogen functionality such as an amine or amide functionality; a silicon functionality; or any combination thereof.
The R
1
group can be any substituted or unsubstituted, saturated or unsaturated organic moiety having from 4 to 36 carbon atoms. Thus, the R
1
groups can be linear or branched alkyl groups, linear or branched alkenyl or alkynyl groups, saturated carbocyclic moieties having one or more multiple bonds, saturated heterocyclic moieties, unsaturated heterocyclic moieties having one or more multiple bonds, substituted linear or branched alkyl groups, substituted linear or branched alkenyl or alkynyl groups, substituted saturated carbocyclic moieties, substituted unsaturated carbocyclic moieties having one or more multiple bonds, substituted saturated heterocyclic moieties, and substituted unsaturated heterocyclic moieties having one or more multiple bonds. Examples of the above include but are not limited to an alkyl group having form 4 to 22 carbon atoms, an alkenyl group having from 4 to 22 carbon atoms, and an alkynyl group having from 4 to 22 carbon atoms. R
1
can also be an arenyl group. Arenyl groups are alkyl-substituted aromatic radicals having a free valence at an alkyl carbon atom such as a benzylic group. Alkyl groups having from 4 to 12 carbon atoms are preferred, and alkyl groups having from 8 to 10 carbon atoms are most preferred. The degree of ethoxylation is preferably from 2 to about 50, more preferably from 3 to about 50, with the most preferred being from 4 to 50, while the degree of propoxylation and butoxylation can vary from 0 to about 50, e.g. from 0 to about 10. The degree of propoxylation and/or butoxylation will be determined by the desired degree of water solubility or miscibility. The water solubility or miscibility will ultimately be determined by such factors as the number of carbon atoms in R
1
, the relative amounts EO, PO and BO, and the effect of PO and BO on the biodegradability of the branched polymer. The water solubility or miscibility of a branched polymer according to the invention and the interrelationships between the number of carbon atoms in R
1
, the relative amounts of EO, PO and BO and the biodegradability of the final product will be readily determinable by one of ordinary skill in the art.
When the Z group of formula (II) is a mercapto group, examples of such compounds include but are not limited to, alkoxylated dodecyl mercaptan and alkoxylated 1-hexadecanethiol.
When the X group is —NR
2
—, the compounds of formula (II) are alkoxylated amines. When the compounds of formula II are alkoxylated amines, n is a number from 0 to 50, preferably from 1 to 50, m is a number from 0 to 50 and p is a number from 0 to 50, preferably from 1 to 50, provided that the sum of n, m, and p is at least 1. Examples of the alkoxylated amines useful for the purposes of the invention include but are not limited to, alkoxylated dibutyl amine, alkoxylated dicyclohexyl amine, alkoxylated diethylethanolamine, and alkoxylated dioctylamine.
The mole ratio of the linking compound (I) to (II) is from about 0.4/1 to about 5/1, preferably from about 0.4/1 to about 2/1 and more preferably from about 0.6/1 to about 1.6/1.
Optionally an additional component can be reacted with the linking agent of formula (I) and the compound of formula (II). A glycidyl ether or amine can be added to the reaction of formula (I) and formula (II). The amount of the glycidyl ether or glycidyl amine is from about 1 to about 20 mole percent based on the moles of the compounds of formula (II) used in the reaction. When the glycidyl ether or glycidyl amine is added to the monofunctional starting material of formula (II), the ratio of formula (I) to formula (II) plus the glycidyl ether or glycidyl amine is preferably from about 0.8 to about 1.4. Examples of the glycidyl ethers include but are not limited to, PEG 600 Diglycidyl ether, TETRONIC™ 701 Tetraglycidyl ether, Triglycidyl DI or Triethanolamine, Polyoxyethylene (POE) 200 Tallow a
Breindel Kenneth
Brown David W.
Cain Edward J.
Cognis Corporation
Drach John E.
Millson, Jr. Henry E.
LandOfFree
Defoamers for pigment dispersants does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Defoamers for pigment dispersants, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Defoamers for pigment dispersants will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3021288