Static structures (e.g. – buildings) – Machine or implement
Reexamination Certificate
2000-02-10
2002-06-11
Friedman, Carl D. (Department: 3635)
Static structures (e.g., buildings)
Machine or implement
C052S241000, C052S481100, C052S712000, C052S749100, C052S749100, C052S749100, C052S745190, C052S696000
Reexamination Certificate
active
06401423
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Technical Field
The present invention relates to a deflector track tab structure, and method of formation, for positioning studs along a deflector track.
2. Related Art
A building may be framed with vertically-oriented, C-shaped steel studs distributed along the outer perimeter of the building with a spacing between studs typically between 16 inches and 24 inches. Each stud has a web and two flanges, such the flanges laterally bound the web along the length of the web and are normal to the web. The stud may be an exterior stud such that a stud flange is parallel and adjacent to an exterior wall of the building and faces toward the outside of the building. The exterior-facing flange is subject to horizontal wind stress and the stud is designed to withstand a maximum of such horizontal wind stress in accordance with engineering standards or as specified by a building code. Alternatively, the stud may be an interior stud such that a stud flange is parallel and adjacent to an interior wall of the building and, accordingly, the stud is not required to withstand any wind stress.
Regardless whether the stud is an exterior stud or an interior stud, however, the stud is not designed to withstand gravitational live loads originating on a floor directly above the stud, wherein gravitational live loads are directed vertically downward on the floor above the stud. Such gravitational live loads may include any weight on the floor above the stud, such as furniture and people. A method of preventing gravitational live loads from being transmitted to the studs includes use of deflector tracks. A deflector track is a C-shaped track having a web and two flanges. The deflector track is mechanically coupled to the floor directly above the studs, with the deflector track web horizontally oriented (e.g., parallel to a ceiling above), and with the track flanges normal to the track web and pointing gravitationally downward (i.e., vertically downward) away from the floor above. The deflector track is typically fastened to the bottom of an I-beam above the track, such as by a powder actuator nail attachment followed by welding and screw fastening. The deflector track is typically 25 to 30 feet in length and is located directly above a group of studs. Gravitational live load on the floor above will cause the floor above to move vertically downward, which will cause the deflector track to likewise move vertically downward. In the absence of gravitational live load, the deflector track web must be vertically separated from the studs by more than a predetermined maximum allowed track deflection that could result from gravitational live load. The maximum allowed track deflection is typically about one inch. With the aforementioned vertical separation greater than the maximum allowed track deflection, the deflector track will not contact the studs below the deflector track under gravitational live-load conditions, and the gravitational live loads will therefore not be transmitted to the studs below. Instead, the gravitational live loads will be transmitted to other mechanical structures of the building, such as vertical posts which are distributed along the outer perimeter of the building and mechanically coupled to the floors of the building by such coupling mechanisms as bar joists and I-beams.
The studs are typically fastened mechanically to flanges of a horizontally-oriented second track, and the second track is located within and below the deflector track. The second track is not coupled to the deflector track and is vertically separated from the deflector track by about an inch typically. The mechanical fastening of the studs to the second track is typically accomplished by using flathead screws and serves to effectuate a desired horizontal spacing between successive studs. A determination of the positions along the second track at which the studs will be fastened requires measurement and is thus labor intensive. Additionally, such measurement is subject to human error. Thus, it would be desirable to accomplish the fastening of the studs to a track (located above the studs) without requiring the aforementioned measurement, which would save labor costs and eliminate the possibility of human error in performing the measurement. It would also be desirable to eliminate the need for the second track, which would further reduce costs as well as simplify the design.
SUMMARY OF THE INVENTION
The present invention provides a method for forming a deflector track structure that includes a deflector track, comprising the steps of:
predetermining a maximum allowed track deflection &dgr; under gravitational live load normal to a web of the deflector track;
predetermining a length K, wherein K exceeds &dgr;, wherein K is a no-load distance that will separate the web and a stud after the stud is subsequently coupled to the track, and wherein the stud is adapted to be coupled to the track;
providing a sheet of metal having a length along an x-direction, a width along a y-direction, and a thickness along a z-direction, wherein the x-direction, the y-direction, and the z-directions define an orthogonal coordinate system;
forming at least one tongue within the sheet of metal, wherein an end of the tongue is integral with the sheet, and wherein the end of the tongue is oriented in the y-direction;
forming at least one slat within the tongue, wherein the slat is oriented in the x-direction, and wherein a length of the slat in the z-direction exceeds 2&dgr;;
bending the tongue rotationally about the end of the tongue, resulting in the tongue becoming a tab oriented in the z-direction such that the end of the tongue remains as an end of the tab;
bending a first side of the sheet of metal rotationally about a first line in the sheet of metal to form a first flange of the deflector track, wherein the first line is oriented in the x-direction, wherein the first flange is oriented in the z-direction, wherein the web of the deflector track remains, wherein a length of the web is oriented in the x-direction, and wherein a height of the first flange in the z-direction exceeds K+&dgr;; and
bending a second side of the sheet of metal rotationally about a second line in the sheet of metal to form a second flange of the deflector track, wherein the second line is oriented in the x-direction, wherein the second flange is oriented in the z-direction, and wherein a height of the second flange in the z-direction exceeds K+&dgr;.
The present invention provides a deflector track, comprising:
a web made of a metal and having a length, a width, and a thickness;
a first flange on a first side of the web, wherein the first flange is integral with the web, wherein the first flange is oriented in a direction normal to the web, wherein a height of the first flange exceeds K+&dgr;, wherein &dgr; is a predetermined maximum allowed track deflection under gravitational live load normal to the web of the deflector track, wherein K is a length that exceeds &dgr;, wherein K is a no-load distance that will separate the web and a stud after the stud is subsequently coupled to the track, and wherein the stud is adapted to be coupled to the track;
a second flange on a second side of the web, wherein the second flange is integral with the web, wherein the second flange is oriented in the direction normal to the web, and wherein a height of the second flange exceeds K+&dgr;; and
at least one tab,
wherein the tab is integral with the web,
wherein a width of the tab is oriented along a width of the web,
wherein a height of the tab is oriented in the direction normal to the web,
wherein the tab includes at least one slat,
wherein the slat has a length that exceeds 2&dgr;; and
wherein the slat is oriented in the direction of the height of the tab.
The present invention has the advantage of positioning studs along a deflector track without measuring positions along the deflector track at which the studs will be fastened, which saves labor costs and eliminates human error that might otherwise occur if such measuring w
Bergeron Mark P.
Dippold Lawrence C.
B & D Industries
Friedman Carl D.
Horton Yvonne M.
Schmeiser Olsen & Watts
LandOfFree
Deflector track tabs for positioning studs along the track does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Deflector track tabs for positioning studs along the track, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Deflector track tabs for positioning studs along the track will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2955803