Surgery – Diagnostic testing
Reexamination Certificate
2001-06-14
2003-12-30
Dolinar, Andrew M. (Department: 3747)
Surgery
Diagnostic testing
C705S003000, C128S923000
Reexamination Certificate
active
06669631
ABSTRACT:
FIELD OF THE INVENTION
The present invention pertains to deep computing applications in medical device systems, and particularly employing deep computing techniques to derive statistical data bases and patient specific data files contributed from multiple data repositories, including implantable medical devices (IMDs), external medical devices and other sources, to formulate patient specific medical history monitoring, diagnostic, therapeutic and educational information and to deliver the information to the patient and/or patient health care provider.
BACKGROUND OF THE INVENTION
A wide variety of IMDs have been developed for use in the human body to monitor a patient's condition and/or to treat a patient's underlying disease states. Such IMDs include implantable cardiac pacemakers, implantable cardioverter/defibrillators (ICDs), pacemaker/cardioverter/defibrillators, cardiomyostimulators, drug delivery systems, cardiac and other physiologic monitors, electrical stimulators including nerve, muscle, and deep brain stimulators, cochlear implants, and heart assist IMDs or pumps, etc.
At present, a wide variety of IMDs are commercially released or proposed for clinical implantation that are programmable in a variety of operating modes and are interrogatable using RF telemetry transmissions in telemetry sessions initiated between the IMD and an externally-located medical device (EMD). The terms “telemeter”, “telemetry transmission” and the like are intended to embrace any action and manner of communicating and conveying patient or physiologic data and downlink telemetry data between the IMD and any type of EMD in the bi-directional uplink and downlink telemetry transmissions.
Typically, certain therapy delivery and monitoring operational modes and parameters of the IMD are altered temporarily or chronically in a non-invasive (i.e. non-surgical) manner using downlink telemetry transmission from an EMD of programming and interrogation commands or downlink messages herein also referred to as “downlink telemetry data”. Moreover, a wide variety of real time and stored physiologic data as well as non-physiologic, IMD related, data or previously stored implant data (referred to collectively herein as “IMD developed patient data”) composed into uplink messages and are uplink telemetered by the IMD to the EMD in response to a downlink telemetered interrogation command that is received by the IMD transceiver.
The EMD is typically characterized as a full function or limited function “programmer”. The full function programmers are implemented with a full range of programming and interrogation capabilities and are intended for use by a physician or other health care provider to communicate with the IMD. In certain instances, patients are provided with limited function programmers (really wouldn't refer to a remote monitor/transponder as a “programmer”) that typically have a limited range of programming functions (or no programming functions at all—like an RF head connected to a modem) and are intended for use by the patient to downlink telemeter a command to the IMD to deliver a therapy or change a therapy and/or to store physiologic data when the patient experiences particular symptoms or send a command instructing the IMD to “upload” stored data.
Such a two-way telemetry session is typically initiated in the presence of a health care provider that is a treating or implanting physician or a physician's assistant or the like, who is technically and medically trained sufficiently to operate the programmer, safely reprogram an operating mode or parameter of the IMD, and initiate uplink telemetry of patient data. Normally, this is done in a clinic, hospital room or physician's office at implant and periodically as deemed advisable during the time that the IMD remains implanted. The patient may have to travel a distance and take time away from employment to participate in the telemetry session. The patient would have to stay under medical care indefinitely if the medical conditions of the patient warrant continuous monitoring of the IMD.
Multiple generations of IMDs of each type may be implanted in the worldwide patient population at any given time because new IMD types and IMD generations are constantly being introduced while longevity of previously implanted IMDs continues to increase. Typically, each new generation of IMD offers more operating modes, parameters, and patient data storage capacity than its predecessor. Consequently, the types and volume of patient data that can be accumulated or sampled in use also increases, placing additional requirements on the telemetry and programming functions that are to be managed by health care providers using the supplied programmer. Thus, health care providers find it necessary to frequently upgrade their training in evaluating new patient candidates, diagnosing their medical condition, prescribing the proper IMD, and then in programming its operating modes and parameters and monitoring features in order to provide the optimum therapy and obtain useful patient data over time.
Moreover, the types of patient data that are developed by various sensors and operating systems of IMDs continue to expand. One such implantable EGM monitor for recording the cardiac electrogram from electrodes remote from the heart as disclosed in commonly assigned U.S. Pat. No. 5,331,966 and PCT publication WO 98/02209 is embodied in the Medtronic® REVEAL® Insertable Loop Recorder having spaced housing EGM electrodes. More elaborate implantable hemodynamic monitors (IHMs) for recording the EGM from electrodes placed in or about the heart and other physiologic sensor derived signals, e.g., one or more of blood pressure, blood gases, temperature, electrical impedance of the heart and/or chest, and patient activity have also been proposed. The Medtronic® CHRONICLE® IHM is an example of such a monitor that is coupled through a lead of the type described in commonly assigned U.S. Pat. No. 5,564,434 having capacitive blood pressure and temperature sensors as well as EGM sense electrodes. Such implantable monitors when implanted in patients suffering from cardiac arrhythmias or heart failure accumulate date and time stamped data that can be of use in determining the condition of the heart over an extended period of time and while the patient is engaged in daily activities. A wide variety of other IMDs have been proposed to monitor many other physiologic conditions as set forth in U.S. Pat. No. 6,221,011.
In addition, while the typical patient receives only one such IMD, there is growing realization that more than one such IMD may be implanted in a single patient as suggested in commonly assigned U.S. Pat. No. 4,987,897 and in U.S. Pat. Nos. 4,886,064 and 4,494,950, for example. For example, IMDs such as an ICD or a pacemaker, a neurological implant, a drug pump, a separate physiologic monitor and various other IMDs may be implanted into a single patient. As suggested in the '897 patent, it may be preferred to have an operable communication between the various IMDs to provide a coordinated clinical monitoring and therapy to the patient on a real-time basis.
In many cases drug regimens are also prescribed for patients having IMDs, and the health care provider must monitor and manage both the prescribed drug therapies and the IMD functions.
Continuous updating and monitoring of the IMDs is necessary to successfully manage the operations and assess the performance of each IMD in the patient receiving one IMD, much less multiple IMDs and interactions with drug therapies. There is a need to monitor the performance of the IMDs on a regular, if not a continuous, basis to ensure optimal patient care. In the absence of other alternatives, this imposes a great burden on the patient if a hospital or clinic is the only center where the necessary frequent follow up, evaluation and adjustment of the IMDs could be made. Moreover, even if feasible, an increasing number of health care providers and increased numbers of service areas or clinic centers would be required to pro
Nelson Chester G.
Norris Harry Eldrige
Dolinar Andrew M.
Medtronic Inc.
Soldner Michael G.
Wolde-Michael Girma
LandOfFree
Deep computing applications in medical device systems does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Deep computing applications in medical device systems, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Deep computing applications in medical device systems will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3174705