Dedicated apparatus and method emission mammography

Radiant energy – Invisible radiant energy responsive electric signalling – With or including a luminophor

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C250S363040

Reexamination Certificate

active

06229145

ABSTRACT:

FIELD OF THE INVENTION
The present invention is related to an apparatus for medical examination. More specifically, the present invention is related to an apparatus and method for imaging the radiotracer concentration in a female breast or other organ.
BACKGROUND OF THE INVENTION
Mammography is currently the most effective method of screening for breast cancer. The goal of breast cancer screening is the detection of early non-palpable tumors. Although mammography is very sensitive in the detection of cancer, it is not very specific in determining whether mammographic abnormalities are due to benign or malignant disease (Limitations of Mammography in the Identification of Noninfiltrating Carcinoma of the Breast, S. F. Sener, F. C. Candela, M. L. Paige, J. R. Bernstein, D. P. Winchester,
Surgery, Gynecology, and Obstetrics,
Aug. 1988, 167:135-140). Therefore, a noninvasive method of confirming the malignancy of suspicious mammographic abnormalities would be a major benefit in patient care. In this way, the number of benign excisional biopsies (approximately 75% of all excisional biopsies) can be reduced.
When abnormal mammograms are encountered, the physician's options are limited. For minimally suspicious lesions, short-term repeat examination (four to six month follow-up) is often recommended. This may result in psychological stress for the patient and introduces the possibility of loss in patient follow-up due to scheduling or communication errors. The unlikely possibility of interim tumor growth cannot be definitely ruled out (Breast Cancer: Age-Specific Growth Rates and Screening Strategies, M. Moskowitz,
Radiolocy, Oct.
1986, 161:37-41), especially in patients under fifty.
The role of ultrasound in clarifying the status of a mammographic abnormality is limited to the differentiation of solid masses from benign cysts. If the strict criteria for the ultrasonic appearance of a simple cyst are satisfied, the referring physician may be reassured that the lesion is benign. Unfortunately, the current spatial resolution of ultrasound makes the technique of limited value for lesions significantly smaller than five millimeters.
Doppler ultrasound has been advocated as a means for differentiating benign from malignant masses, but results of clinical trials have been contradictory, and the doppler method has no current clinical role in breast imaging (The Role of US in Breast Imaging, V. P. Jackson,
Radiology,
Nov. 1990, 177:305-311).
Fine-Needle Aspiration (FNA) of breast masses is a technique whose sensitivity and specificity is operator dependent (Fine-Needle Aspiration Biopsies of Breast Masses, L. Palombini et al.,
Cancer,
Jun. 1, 1988, 61:2273-2277), and has been considered experimental (Discriminating Analysis Uncovers Breast Lesions, D. B. Kopans,
Diagnostic Imaging,
Sept. 1991, pp. 94-101). Because of its relatively low cost and reduced morbidity associated with surgery and anesthesia, FNA has been suggested as a possible replacement for excisional biopsy. Unfortunately, there is a high (13-50%) rate of insufficient samples when FNA is performed on non-palpable mammographically detected lesions. All of these cases of negative FNAs require excisional biopsy (Fine-Needle Aspiration Cytology in Lieu of Open Biopsy in Management of Primary Breast Cancer, H. J. Wanebo et al.,
Annals of Surgery,
May 1984, 199 (5) pp. 569-579). Further, FNA as a non-imaging diagnostic modality, has the disadvantage that no information is obtained about the physical distribution of the detected tumor. As a cytopathological technique, FNA cannot easily differentiate between cases of marked dysplasia, carcinoma-in-situ, or invasive cancer. Fine-Needle Aspiration is generally not performed for non-palpable breast lesions.
Another option for the referral of a patient with equivocal mammographic anomalies is excisional biopsy of the breast in the area corresponding to the region of mammographic abnormality. The probability of malignancy ranges from 2% for a circumscribed solid mass to almost 90% for a spiculated ill-defined mass (Discriminating Analysis Uncovers Breast Lesions, D. B. Kopans,
Diagnostic Imaging,
Sep. 1991, pp. 94-101. The true-positive fraction for biopsies obtained as a result of a mammographic screening program is between twenty and thirty percent (Nonpalpable Breast Lesions: Accuracy of Prebiopsy Mammographic Diagnosis, G. Hermann, C. Janus, I. S. Schwartz, B. Krivisky, S. Bier, J. G. Rabinowitz,
Radiology,
Nov. 1987 165:323-326; R. Brem, personal communication). Excisional biopsy has the additional disadvantage of introducing scarring, which may render interpretation of follow-up mammograms more difficult (Discriminating Analysis Uncovers Breast Lesions, D. B. Kopans,
Diagnostic Imaging,
Sep. 1991, pp. 94-101). An additional disadvantage to excisional biopsies is that, as a non-imaging modality, the physical distribution of the tumor is poorly described.
It is also possible to use radionuclide imaging to detect cancers. 2-[F-18]-Fluoro-2-deoxy-D-glucose (FDG) is a radioactive analogue of glucose that is taken up preferentially by cancer cells (Primary and Metastatic Breast Carcinoma: Initial Clinical Evaluation with PET with the Radiolabeled Glucose Analogue 2-[F-18]-Fluoro-2-deoxy-D-glucose, R. L. Wahl, R. L. Cody, G. D. Hutchins, E. E. Mudgett, Radiology (1991) 179:765-770). A Fluorine-18 nucleus decays by emitting a positron which is annihilated within a millimeter by an electron. The result of this annihilation is the production of two 511 kev (thousand electron volts) gamma rays that are approximately 180 degrees apart in direction. After a patient has received an intravenous dose of FDG she may be examined with detectors that sense these gamma rays.
Previous detection methods have included imaging with a specially collimated planar gamma camera ([18-F] Fluorodeoxyglucose scintigraphy in diagnosis and follow up of treatment in advanced breast cancer,
European Journal of Nuclear Medicine
(1989) 15:61-66) and with a whole-body Positron Emission Tomography (PET) scanner (Primary and Metastatic Breast Carcinoma: Initial Clinical Evaluation with PET with the Radiolabeled Glucose Analogue 2-[F-18]-Fluoro-2-deoxy-D-glucose, R. L. Wahl, R. L. Cody, G. D. Hutchins, E. E. Mudgett,
Radiology
(1991) 179:765-770). PET imaging of breast cancer patients given FDG has been shown to be useful in imaging tumors as small as 3.2 cm and in patients whose breasts are too dense to be imaged well mammographically (Primary and Metastatic Breast Carcinoma: Initial Clinical Evaluation with PET with the Radiolabeled Glucose Analogue 2-[F-18]-Fluoro-2-deoxy-D-glucose, R. L. Wahl, R. L. Cody, G. D. Hutchins, E. E. Mudgett,
Radiology
(1991) 179:765-770).
The use of a specially collimated planar gamma camera to image the breast with this high resolution is limited by technical factors. The energy of 511 KeV is too penetrating to be detected well by conventional gamma cameras, and the collimation required to correct for the high energy leads to loss of signal (counts/pixel) that is equivalent to resolution loss due to low photon flux.
Conventional PET imaging devices are designed to image cross sections of the entire body. Accordingly, there are several disadvantages to employing a whole body PET scanner in a primary role as a high resolution confirmatory modality for small suspicious breast lesions. The first disadvantage of using a whole body PET scanner for breast imaging is the limited resolution available. The net resolution of a whole-body PET system is a combination of individual factors and is limited to above 5 mm FWHM (E. Rota-Kops et al., Journal of Computer Assisted Tomography 1990, May-June 14 (3), pages 437-445; N. A. Mullani et al., Journal of Nuclear Medicine 1990, May 31 (5), pages 610-616 and pages 628-631; K. Wienhard et al., Journal of Computer Assisted Tomography 1992, Sep.-Oct. 16 (5) pages 804-813). The effect of this resolution limit is that radioactivity is underestimated (Positron Emission Tomography and Auto

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Dedicated apparatus and method emission mammography does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Dedicated apparatus and method emission mammography, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Dedicated apparatus and method emission mammography will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2462294

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.