Fishing – trapping – and vermin destroying – Decoys – Duck
Reexamination Certificate
2001-05-04
2002-09-17
Jordan, Charles T. (Department: 3644)
Fishing, trapping, and vermin destroying
Decoys
Duck
Reexamination Certificate
active
06449894
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to a decoy apparatus, and, more particularly, to a decoy apparatus with rotatable wing assemblies for alluring birds within visual distance of the decoy apparatus regardless of their environmental location.
2. Description of the Prior Art
Decoy art is ancient. Hunter societies on the American Continent have used decoys in their hunt for centuries. These ancient decoys were designed, in part, to bring game birds within close proximity to the hunters due to the relatively primitive weaponry of the day. Bird decoys estimated to be over a thousand years old and made of reeds and feathers have been discovered and preserved from these earlier times. Down through the centuries, hunters have continually endeavored to improve upon their decoys and the process of continual improvement persists to this day.
Despite the trend to constantly improve upon that which has come before, it is well known in the art that waterfowl decoys, in particular, can be very simple and yet allure waterfowl. For example, effective waterfowl decoys can be made from mud lumps, newspapers, bottles, diapers and even rags. Conversely, complex decoys are also effective. Robotic decoys, for example, lure not only other game, but human poachers as well. The more lifelike the decoy, it is argued, the more effective the decoy for alluring game.
In the early 1900's, hunters commonly used trained live game birds to lure wild game birds. The use of these live so-called decoys, however, was outlawed in the United States in 1935, prompting hunters in the United States to find life-like substitutes. Decoy dogma teaches that visually imitative, naturally animated decoys tend to be more effective at luring wildlife. When used with an eye toward wildlife population sustainability, visually imitative, naturally-animated decoys enable the user to reach a hunt limit more efficiently, thus leaving far fewer wounded animals in the environment. Similarly, visually imitative, naturally animated decoys enable users to lure wildlife away from environmental locations where its presence is undesirable. Visually imitative decoys employing motorized systems for animation are among the most effective decoys available.
Decoys employing motorized systems for animation, however, are both detrimental to the environment and have limited effectiveness. Decoys employing motorized systems for animation are environmentally detrimental in that power sources are often discarded into the environment. Further, decoys employing motorized systems for animation are limited in their effectiveness in that the visually apparent animation they exhibit tends to be static, mechanical and highly repetitive. Additionally, motorized systems for animation often conflict with environmental conditions, namely wind conditions, and tend to wear more quickly due to oppositional forces impinging upon mechanically operative parts.
Visually imitative decoys employing wind-actuating systems for animation are preferred. Wind-actuated systems for decoy animation rarely result in environmentally discarded material. Further, wind-actuated systems animate decoys in tune with environmental conditions, namely wind conditions, thereby creating more random, natural animation. In this manner, the alluring effect is maximized. Moreover, wind-actuated systems for decoy animation harness wind energy operate in tune with wind conditions and wear more slowly as a result.
Bird decoys having wind-actuated means for wing movement are known in the prior art and some are described hereinafter. U.S. Pat. No. 4,620,385, which issued to Carranza et al., teaches rotatable wings rotatably received on an axle member and being bracketed to an existing decoy. The wing structures are rigid blade members shaped to receive wind energy and rotate about the axle member. The blades are colored in contrasting colors on opposite sides of the wing so that when the wings rotate, driven by wind energy, a more attractive visual effect is created, which can be seen from greater visual distances. The shape of the rotatable wings is not visually imitative thus limiting decoy effectiveness. Further, the rotatable wings are not integrally formed with the bird decoy body structure, which detracts from the decoy's visually imitative effect thus limiting decoy effectiveness. Moreover, the rotatable wings are not readily viewable from extreme lateral viewpoints thus further handicapping decoy effectiveness.
U.S. Pat. No. 5,144,764, which issued to Peterson, teaches a decoy with wind-actuated flexible wings which when exposed to wind energy fluctuate in an up and down manner. When the wings are oriented in a relaxed state and wind is directed against the wings, lift is generated, causing the wings to rise to an ultimate stall position causing the wings, in turn to fall, thereby creating the effect of life-like wing movement. This disclosure. lacks the preferred realism of an anatomically correct bird body structure and lacks alluring effect at greater visual distances, but is otherwise believed to be an effective wind-animated decoy insofar as the flexible wings are integrally formed with the decoy portion representing the bird body.
U.S. Pat. No. 5,862,619, which issued to Stancil, teaches a rotatable vane used in cooperative association with an existing decoy. The vane employs elliptical blade members shaped to receive wind energy and colored on opposite sides in contrasting colors so as to create a more alluring visual effect upon rotation. The vane is rotatably attached to an existing decoy by a support. The rotation is one-way creating lift thereby and causing the decoy to slightly rise out of water. A motor may be used to supply rotational force in the absence of wind. This disclosure is not visually imitative in that it lacks the preferable integral wing to body configuration and seems awkward in practice. While the vane blades approach a more life-like wing shape, the support structure simultaneously detracts from the lure's visually imitative effect thus limiting decoy effectiveness. Further, the blade members do not produce a visually alternating signal viewable from extreme lateral viewpoints, thus further limiting decoy effectiveness.
None of the prior art discloses wind-driven rotatable wings that employ rotor blades for collecting and converting wind energy into rotational power to rotatably drive a shaft member integrally mounted with a decoy body structure. Further, none of the prior art discloses rotatable wings readily viewable from extreme lateral positions. Rotor blade members mounted on wing structures are not only useful as energy conversion machines but are also readily viewable from extreme lateral positions thereby increasing the range of attraction from primarily anterior, posterior and vertical viewpoints to a virtually universal perspective.
Wildlife exhibit myriad bodily movements. Attempting to simulate these in an artificially animated decoy is difficult. Wind-actuated decoy animation more closely approximates wildlife movement in that wind-actuated decoy animation is in tune with the environment, namely wind conditions, and is not as static or as repetitive as is motorized decoy animation. None of the prior art patents shows a mounting system that enables the user to selectively position the decoy in a triaxial manner. Selective triaxial positioning further enables the user to simulate the myriad bodily movements of which wildlife is capable.
SUMMARY OF THE INVENTION
Accordingly, one objective of the present invention is to provide a decoy apparatus with visually imitative decoy body structure to further enhance decoy effectiveness. Another objective of the present invention is to provide visually imitative decoy wing structure to further enhance decoy effectiveness. Yet another objective of the present invention is to provide integral wing to body configuration to still further enhance decoy effectiveness. Still another objective of the present invention is to provide an energy-efficient, yet
DeSmidt James J.
Price, Sr. Fred F.
Jordan Charles T.
Meroni & Meroni P.C.
Meroni, Jr. Charles F.
Scott Christopher J.
Smith Kimberly S.
LandOfFree
Decoy apparatus with adjustable pitch rotor blade wing assembly does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Decoy apparatus with adjustable pitch rotor blade wing assembly, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Decoy apparatus with adjustable pitch rotor blade wing assembly will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2833168