Decontamination of fluids or objects contaminated with...

Chemical apparatus and process disinfecting – deodorizing – preser – Chemical reactor – With means applying electromagnetic wave energy or...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C422S186050

Reexamination Certificate

active

06455014

ABSTRACT:

FIELD OF THE INVENTION
This invention relates to the decontamination of fluids, surfaces and objects, and more specifically to the use of an energy source for the decontamination of fluids, surfaces and objects contaminated with chemical or biological agents.
BACKGROUND OF THE INVENTION
The use of a non-thermal plasma to destroy pollutants is known. A non-thermal plasma is a plasma in which electrons, rather than a gas, are excited. Ozone generators commonly use a non-thermal plasma to produce ozone. Devices that produce non-thermal plasmas are often referred to as corona discharge generators. These devices generally operate by using very short duration, high voltage pulses (pulsed corona discharge) applied to an electrode. A corona discharge generator that employs a dielectric coating on the electrode is sometimes referred to as a barrier or silent corona discharge device. Tesla coils are often used as the high voltage source for a pulsed corona discharge; however, the pulsed corona discharge produced by a Tesla coil is often quite loud.
Recently, non-thermal plasmas have been used to remove pollutants from gas streams. U.S. Pat. No. 4,954,320, “Reactive Bed Plasma Air Purification,” describes one such use of a non-thermal or corona discharge device used to detoxify a gas stream by passing the gas stream through a non-thermal plasma. The reactive bed plasma device described therein produces an active plasma, which yields energetic free electrons and highly reactive chemical species, especially oxygen atoms, to promote rapid oxidative decomposition of the contaminants in the air stream. This oxidation is similar to the process of incineration with the most notable difference being the dramatically reduced operating temperatures of the reactive bed plasma device. Electron impact is the driving force of plasma-induced decomposition, because it creates more free electrons, ions, reactive neutrals, and radicals. Another result of direct energy input at the quantum level is the emission of ultraviolet light from nitrogen molecules in the surrounding air. This ultraviolet radiation is capable of breaking some chemical bonds, ionizing many compounds, and disinfecting selected biological contaminants upon prolonged exposure.
While the prior art seems to suggest that a non-thermal plasma may be useful for treating a stream of gas, there is much less teaching of how to apply a non-thermal plasma to the decontamination of a surface or an object. Experimental chambers have been constructed to batch treat small objects with a non-thermal plasma. While such chambers can be useful in treating small, easily handled objects, it would be desirable to develop a system that enables a non-thermal plasma to destroy contaminants on the surfaces of large objects. It would further be desirable to develop a decontamination system that can distribute a non-thermal plasma to a wide variety of contaminated materials, including surfaces, objects, and fluids. The prior art does not teach or suggest how such a distributed non-thermal plasma generator can be achieved to provide for the independent or simultaneous decontamination of surfaces, object, or fluids.
While generally planar surfaces can be decontaminated using a non-thermal plasma generator that does not exhibit much dimensional flexibility, the decontamination of an irregularly-shaped object having non-planar surfaces would require a non-thermal plasma generator sufficiently large and flexible enough to drape over the object, so that the non-thermal plasma can “blanket” the object to be treated. The prior art does not teach or suggest how such a dimensionally flexible non-thermal plasma generator can be achieved.
An additional drawback of prior art non-thermal plasma generators is their relatively high power requirements. While such power levels as required for prior art devices may be readily supplied for compact non-thermal plasma generators, substantially larger non-thermal plasma generators will require correspondingly greater levels of power. Thus, a relatively large non-thermal plasma generator could not be easily powered by a portable power source, such as a battery. It is desirable that a non-thermal plasma generator based decontamination system scaled up to a relatively large size (able to decontaminate an object the size of a vehicle, for example) should still require power levels providable by portable power supplies. It would be further desirable that smaller non-thermal plasma generator based decontamination systems be powered by small batteries, such that non-thermal plasma generator based decontamination systems can be incorporated into small products such as personal air purifying respirators (APRs). The prior art also does not teach or suggest such systems.
While the prior art teaches using a non-thermal plasma to destroy the pollutants in a gas stream, there exists a wide range of chemical and biological agents that can contaminate surfaces, objects, or fluids, the destruction of which is not discussed in the prior art. Releases of chemicals from farms, factories and homes can contaminate soils. Fungi and spores can contaminate seeds and foodstuffs, and even the soil used to grow crops. Disease causing microorganisms are frequently present on surfaces, objects, and within the air. Allergens and toxins are frequently present in the outside ambient air, as well as the air within buildings (i.e., the “sick building syndrome”).
Additionally, potential terrorist use of chemical and biological agents represents an ever-growing threat to populations and property. The release of the chemical warfare agent Sarin in the Tokyo subway system by the Aum Shinrikyo cult has drawn widespread attention to the potential use of chemical and biological agents in attacks by terrorist or dissident groups. Also of concern is the fact that use of chemical and biological warfare agents by foreign powers during military actions seems much more likely in view of events in the Middle East during the last decade. Military vehicles and other objects exposed to chemical and biological contamination represent a hazard if their surfaces are contacted by unprotected personnel. Decontamination of an area or object after the actual or suspected release of such agents thus poses significant challenges and risks.
It therefore would be desirable to develop a decontamination system that is effective against a wide range of biological and chemical agents, while minimizing incidental damage to the surface or object being decontaminated. It would further be desirable for such a decontamination system to have a low power requirement so that batteries or other readily portable power sources could be employed to energize the system. A desirable system of this type should operate at ambient pressure and temperature and should not consume large quantities of reagents nor produce large quantities of waste byproducts. A desirable decontamination system should be able to readily destroy contaminants disposed within cracks or crevices of a surface or object. Finally, such a system should be well adapted to decontaminating almost any fluid stream, such as breathing or medical air; as well as almost any surface, such as floors, desks, or walls, and more complex objects, such as irregularly-shaped tools, vehicles, and other equipment.
SUMMARY OF THE INVENTION
In accord with the present invention, apparatus are defined for detoxifying chemical or biological agents. These agents may be on a surface or entrained in a fluid. The distributed plasma reactor apparatus includes a non-thermal plasma generator, which when activated by a sufficiently high voltage, produces a plasma discharge. The plasma discharge is adapted to be positioned in proximity to the chemical or biological agents so that reactants produced by the plasma discharge detoxify the chemical or biological agents. A power source capable of energizing the non-thermal plasma generator at a high voltage is electrically coupled to the non-thermal plasma generator to activate it.
In one preferred embodiment, the distributed plasma

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Decontamination of fluids or objects contaminated with... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Decontamination of fluids or objects contaminated with..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Decontamination of fluids or objects contaminated with... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2878700

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.