Decontamination apparatus

Chemical apparatus and process disinfecting – deodorizing – preser – Process disinfecting – preserving – deodorizing – or sterilizing – Using direct contact with electrical or electromagnetic...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C250S455110, C422S001000, C422S023000

Reexamination Certificate

active

06702984

ABSTRACT:

BACKGROUND
Personnel working within environments contaminated with hazardous chemical or biological agents typically wear protective suits to prevent direct exposure to the hazardous agents. Since the outer surfaces of the suit can become covered with the hazardous agents during use, the user is in danger of becoming contaminated when the time comes to remove the suit. Therefore, it is apparent that there are instances where the skin and inner clothing of such personnel can come into contact with the hazardous agents. In addition, there may be situations where people not wearing protective clothing find themselves in a contaminated environment and become contaminated with such hazardous agents.
SUMMARY
The present invention is directed to a decontamination apparatus and method of decontaminating which is suitable for decontaminating surfaces, including clothing or the skin on a person, or other living creatures. Decontaminating surfaces on a living creature includes generating a beam of electrons with an electron beam generator operating in the range of about 40 kv to 60 kv. The beam of electrons exit the electron beam generator through an exit window. The surfaces on the living creature are irradiated with the beam of electrons. The beam of electrons are of an energy sufficient to decontaminate the surfaces without damaging living tissue.
In preferred embodiments, ozone is reduced in front of the exit window with an ozone reduction system. In one embodiment, the ozone reduction system includes a gas removal system for removing ozone generated in front of the exit window. In another embodiment, the ozone reduction system includes a nozzle assembly for providing inert gas to occupy an area adjacent to the exit window to prevent the generation of ozone. The nozzle assembly is arranged around the exit window and directs the gas in substantially the same direction as the beam of electrons. The inert gas can be a low density gas such as helium which increases the range of the electrons. When low density gas is employed, the exit window of the electron beam generator can be spaced between about ¼ to an 1 inch away from the surfaces. The electron beam generator commonly operates at 50 kv and lower with 40 kv to 50 kv being typical, and wherein the exit window of the electron beam generator is spaced between about ¼ to ½ inches away from the surfaces. The electron beam generator can be moved with a robotic arm for moving the beam of electrons over the surfaces. Typically, the exit window is spaced from the surfaces with a spacing device which can be a sensor.
The present invention is also directed to decontaminating surfaces on a living creature including generating beams of electrons from a series of electron beam generators operating in the range of about 40 kv to 60 kv and positioned to face multiple surfaces on the living creature. The multiple surfaces on the living creature are simultaneously irradiated with the beams of electrons. The beams of electrons are of an energy sufficient to decontaminate the surfaces without damaging living tissue.
The present invention is also directed to decontaminating surfaces including generating a beam of electrons with an electron beam generator. The beam of electrons exit the electron beam generator through an exit window to irradiate the surfaces. A supply of low density gas is provided to occupy an area adjacent to the exit window to increase the range of the beam of electrons. The exit window of the electron beam generator is actively spaced an effective distance away from the surfaces with a spacing device.
The present invention is also directed to a decontamination apparatus including an electron beam generator operating in the range of about 40 kv to 60 kv for generating a beam of electrons to decontaminate surfaces. The beam of electrons exit the electron beam generator through an exit window. A nozzle assembly provides a supply of low density gas for occupying an area adjacent to the exit window to increase the range of the beam of electrons. A spacing device spaces the exit window of the electron beam generator between about ¼ to 1 inch away from the surfaces.
In preferred embodiments, the surfaces are often on a living creature, and the low density gas is helium. The nozzle assembly is arranged around the exit window and directs the gas in substantially the same direction as the beam of electrons. The electron beam generator commonly operates at 50 kv and lower, with 40 kv to 50 kv being typical, and wherein the spacing device spaces the exit window of the electron beam generator between about ¼ to ½ inches away from the surfaces. The electron beam generator can be mounted to a robotic arm for moving the beam of electrons over the surfaces. If desired, more than one electron beam generator can be mounted to the robotic arm.
The present invention is also directed to a decontamination apparatus including a series of electron beam generators operating in the range of about 40 kv to 60 kv for generating beams of electrons to decontaminate multiple surfaces of a living creature. The beams of electrons exit the electron beam generators through respective exit windows. The electron beam generators are configured for simultaneously irradiating the multiple surfaces of the living creature with the electron beams. A nozzle assembly provides a supply of low density gas for occupying areas adjacent to the exit windows to increase the range of the beam of electrons.
The present invention is further directed to a decontamination apparatus including an electron beam generator for generating a beam of electrons to decontaminate surfaces. The beam of electrons exits the electron beam generator through an exit window. An ozone reduction system reduces ozone in front of the exit window. A spacing device actively spaces the exit window of the electron beam generator within an effective distance away from the surfaces.
When the power of the electron beam generator in the present invention is selected to be relatively low, the beam of electrons has sufficient energy to decontaminate the outer layers of dead skin of a person but not enough energy to penetrate deep enough to reach or damage living tissue. In addition, by forming an area of low density helium gas adjacent to the exit window, the density of gases in front of the exit window is reduced. This provides increased range for the low power beam of electrons resulting in more effective decontamination.


REFERENCES:
patent: 3780308 (1973-12-01), Nablo
patent: 4652763 (1987-03-01), Nablo
patent: 5136212 (1992-08-01), Eguchi et al.
patent: 5378898 (1995-01-01), Schonberg et al.
patent: 5457269 (1995-10-01), Schonberg
patent: 5530255 (1996-06-01), Lyons et al.
patent: 5539212 (1996-07-01), Matthews et al.
patent: 5561298 (1996-10-01), Cirlin et al.
patent: 5603853 (1997-02-01), Mombo-Caristan
patent: 5709842 (1998-01-01), Held et al.
patent: 5744811 (1998-04-01), Schonberg et al.
patent: 5882487 (1999-03-01), Li et al.
patent: 5962995 (1999-10-01), Avnery
patent: 5998691 (1999-12-01), Abel et al.
patent: 6054714 (2000-04-01), Izutsu et al.
patent: 6113851 (2000-09-01), Soloshenko et al.
patent: 6140657 (2000-10-01), Wakalopulos et al.
patent: 6203755 (2001-03-01), Odland
patent: 6264836 (2001-07-01), Lantis
patent: 11137645 (1999-05-01), None

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Decontamination apparatus does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Decontamination apparatus, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Decontamination apparatus will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3280034

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.