Food or edible material: processes – compositions – and products – Direct application of electrical or wave energy to food... – Involving wave energy of the sonic or pulsating type
Patent
1993-09-16
1996-03-12
Yeung, George
Food or edible material: processes, compositions, and products
Direct application of electrical or wave energy to food...
Involving wave energy of the sonic or pulsating type
99451, 422 20, 426506, A23B 900, A23L 300
Patent
active
054984319
DESCRIPTION:
BRIEF SUMMARY
BACKGROUND OF THE INVENTION
The present invention relates to a method for the decontamination and detoxification of substances, in particular of seeds such as rice, buckwheat, legumes, nuts or the like, and of cereals, in particular maize, wheat, oats, barley, rye which are contaminated with mycotoxins, such as for example aflatoxins, zearalenones or ochratoxins, in particular with tetracyclic trichothecene mycotoxins of the general basic formula ##STR1## with the radicals R.sub.1 to R.sub.5 being described by the various trichothecene mycotoxins, such as for example T-2 toxin (T-2), HT-2 toxin (HT-2), diacetoxyscirpenol (DAS), monoacetoxyscirpenol, neosolaniol, nivalenol (NIV), deoxynivalenol (DON), 3-acetyldeoxynivalenol (3-AcDON), T-2 tetraol, scirpentriol, fusarenon, crotocin, satratoxin H etc.
Aflatoxins, zearalenones and ochratoxins have quite different chemical structures when compared with the trichothecenes, but have in common with them an ester or lacton structure element in the molecule which is reactive and which can for example react with compounds with a primary or secondary amino function to form the corresponding amides.
Trichothecenes are sesquiterpenoid compounds with a C12, C13 spiroepoxy group which are produced by fungi such as fusarium, trichothecium, myrothecium, stachybotrys and other. Rice and different cereal types, in particular maize, wheat, oats, barley and rye, are contaminated depending on the kind of species, climatic conditions and nature of the ground by these fungi and are in this way contaminated with secondary metabolic products, with the mycotoxins, such as the trichothecene type. These mycotoxins cause various trichothecene toxicoses, both in animals when the contaminated cereal is used as feed and also in humans.
The various trichothecenes act in different concentrations in such a way that they cause cell damage, are neurotoxic and dermatoxic and lead to a rejection of the feed, to sickness and diarrhea. Over a longer period of time relatively large quantities of mycotoxins can be passed on, especially to animals, via the feed or feed cereals and even by those having a small mycotoxin contamination and this often leads to serious disorders (see "Mycotoxins in Food", P. Krogh, Edt., Academic Press, New York, 1987). The fungi which deliver the trichothecenes generally already contaminate the cereal in the field and can however also remain active with incorrect storage of the cereal (for example cool and moist). One can perhaps control the storage conditions but not however the contamination in the field so that this also depends strongly on climatic conditions.
A harvest which is strongly contaminated with mycotoxins is hardly usable and leads to substantial economic damage. In particular this also applies to maize and wheat which are used in large quantities in the feed industry. As investigations show (Hart and Braselton, J. Agric. Food Chem. 31, 657 (1983)) the dry milling process of wheat which was for example contaminated with DON admittedly leads to a partial separation of DON richer and DON weaker flour and meal, however in any event DON remains in the end product. The same also applies to maize products.
Trichothecenes are chemically relatively stable, in particular the toxophor group, the 12,13 epoxide. Thus the deoxynivalenol (DON) is hardly broken down even with cooking, roasting and baking conditions and also during autoclaving or steam treatment (toasting, pelleting, extruding) and thus also remains in existence in a prepared feed or foodstuff. That is to say, no detoxification is achieved in this way (see A.El-Banna et al., J. of Food Protection 46 (6) (1983)). Trichothecenes which contain an ester group are converted in the alkaline mixture into the corresponding alcohols, however the toxicity of the decomposition products obtained in this way is mainly high and is generally hardly reduced via this decomposition route (see "Mycotoxins in Food" and citations therein).
Since it is only in the last few years that it has been fully recognized that especiall
REFERENCES:
patent: 4477357 (1993-10-01), Sittenfield
LandOfFree
Decontamination and detoxification of cereals contaminated with does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Decontamination and detoxification of cereals contaminated with , we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Decontamination and detoxification of cereals contaminated with will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2098756