Decoding for generalized orthogonal design for space-time...

Pulse or digital communications – Receivers – Interference or noise reduction

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C375S267000, C455S506000, C455S101000

Reexamination Certificate

active

06661856

ABSTRACT:

BACKGROUND OF THE INVENTION
This invention relates to wireless communication and, more particularly, to techniques for effective wireless communication in the presence of fading and other degradations.
The most effective technique for mitigating multipath fading in a wireless radio channel is to cancel the effect of fading at the transmitter by controlling the transmitter's power. That is, if the channel conditions are known at the transmitter (on one side of the link), then the transmitter can pre-distort the signal to overcome the effect of the channel at the receiver (on the other side). However, there are two fundamental problems with this approach. The first problem is the transmitter's dynamic range. For the transmitter to overcome an x dB fade, it must increase its power by x dB which, in most cases, is not practical because of radiation power limitations, and the size and cost of amplifiers. The second problem is that the transmitter does not have any knowledge of the channel as seen by the receiver (except for time division duplex systems, where the transmitter receives power from a known other transmitter over the same channel). Therefore, if one wants to control a transmitter based on channel characteristics, channel information has to be sent from the receiver to the transmitter, which results in throughput degradation and added complexity to both the transmitter and the receiver.
Other effective techniques are time and frequency diversity. Using time interleaving together with coding can provide diversity improvement. The same holds for frequency hopping and spread spectrum. However, time interleaving results in unnecessarily large delays when the channel is slowly varying. Equivalently, frequency diversity techniques are ineffective when the coherence bandwidth of the channel is large (small delay spread).
It is well known that in most scattering environments antenna diversity is the most practical and effective technique for reducing the effect of multipath fading. The classical approach to antenna diversity is to use multiple antennas at the receiver and perform combining (or selection) to improve the quality of the received signal.
The major problem with using the receiver diversity approach in current wireless communication systems, such as IS-136 and GSM, is the cost, size and power consumption constraints of the receivers. For obvious reasons, small size, weight and cost are paramount. The addition of multiple antennas and RF chains (or selection and switching circuits) in receivers is presently not be feasible. As a result, diversity techniques have often been applied only to improve the up-link (receiver to base) transmission quality with multiple antennas (and receivers) at the base station. Since a base station often serves thousands of receivers, it is more economical to add equipment to base stations rather than the receivers
Recently, some interesting approaches for transmitter diversity have been suggested. A delay diversity scheme was proposed by A. Wittneben in “Base Station Modulation Diversity for Digital SIMULCAST,” Proceeding of the 1991 IEEE Vehicular Technology Conference (VTC 41 st), PP. 848-853, May 1991, and in “A New Bandwidth Efficient Transmit Antenna Modulation Diversity Scheme For Linear Digital Modulation,” in Proceeding of the 1993 IEEE International Conference on Communications (IICC '93), PP. 1630-1634, May 1993. The proposal is for a base station to transmit a sequence of symbols through one antenna, and the same sequence of symbols—but delayed—through another antenna.
U.S. Pat. 5,479,448, issued to Nambirajan Seshadri on Dec. 26, 1995, discloses a similar arrangement where a sequence of codes is transmitted through two antennas. The sequence of codes is routed through a cycling switch that directs each code to the various antennas, in succession. Since copies of the same symbol are transmitted through multiple antennas at different times, both space and time diversity are achieved. A maximum likelihood sequence estimator (MLSE) or a minimum mean squared error (MMSE) equalizer is then used to resolve multipath distortion and provide diversity gain. See also N. Seshadri, J. H. Winters, “Two Signaling Schemes for Improving the Error Performance of FDD Transmission Systems Using Transmitter Antenna Diversity,”
Proceeding of the
1993
IEEE Vehicular Technology Conference
(VTC 43rd), pp. 508-511, May 1993; and J. H. Winters, “The Diversity Gain of Transmit Diversity in Wireless Systems with Rayleigh Fading,”
Proceeding of the
1994
ICC/SUPERCOMM
, New Orleans, Vol. 2, PP. 1121-1125, May 1994.
Still another interesting approach is disclosed by Tarokh, Seshadri, Calderbank and Naguib in U.S. application, Ser. No. 08/847635, filed Apr. 25, 1997 (based on a provisional application filed Nov. 7, 1996), where symbols are encoded according to the antennas through which they are simultaneously transmitted, and are decoded using a maximum likelihood decoder. More specifically, the process at the transmitter handles the information in blocks of M
1
bits, where M
1
is a multiple of M
2
, i.e., M
1
=k*M
2
. It converts each successive group of M
2
bits into information symbols (generating thereby k information symbols), encodes each sequence of k information symbols into n channel codes (developing thereby a group of n channel codes for each sequence of k information symbols), and applies each code of a group of codes to a different antenna.
Recently, a powerful approach is disclosed by Alamouti et al in U.S. patent application Ser. No. 09/074,224, filed May 5, 1998, and titled “Transmitter Diversity Technique for Wireless Communication”. This disclosure revealed that an arrangement with two transmitter antennas can be realized that provides diversity with bandwidth efficiency, easy decoding at the receiver (merely linear processing), and performance that is the same as the performance of maximum ratio combining arrangements. In this arrangement the constellation has four symbols, and a frame has two time slots during which two bits arrive. Those bit are encoded so that in a first time slot symbol c
1
and c
2
are sent by the first and second antennas, respectively, and in a second time slot symbols −c
2
* and c
1
* are sent by the first and second antennas, respectively. Accordingly, this can be expressed by an equation of the form r=Hc+n, where r is a vector of signals received in the two time slots, c is a vector of symbols c
1
and c
2
, n is a vector of received noise signals in the two time slots, and H is an orthogonal matrix that reflects the above-described constellation of symbols.
The good performance of this disclosed approach forms an impetus for finding other systems, with a larger number of transmit antennas, that has equally good performance.
SUMMARY
The prior art teachings for encoding signals and transmitting them over a plurality of antennas are advanced by disclosing a method for encoding for any number of transmitting antennas. Also disclosed is a generalized approach for maximum likelihood decoding where a decision rule is formed for all of the transmitting antennas of a transmitter, and a decision is made in favor of the transmitted symbols the minimize the equation
c
i
=
arg



min
c

&LeftBracketingBar;
R
i
-
c
&RightBracketingBar;
2
+
(
-
1
+

&LeftBracketingBar;
h
i
,
j
&RightBracketingBar;
2
)

&LeftBracketingBar;
c
&RightBracketingBar;
2
where
R
i
=

t
=
1
n




j
=
1
m



r
t
j

h
ϵ
t

(
i
)

j
*

δ
t

(
i
)
r
t
J
is the signal received at time interval t, at receiving antenna j,
h
*
&egr;
t
(i)j
is the complex conjugate of the channel transfer function between the transmitter antenna that is transmitting symbol c
i
and receiving antenna j, and &dgr;
t
(i) is the sign of symbol c
i
in time interval t.


REFERENCES:
patent: 3633107 (1972-01-01), Brady
patent: 4489418 (1984-12-01), Mazo
patent: 4520490 (1985-05-01), Wei
patent: 4597090 (1986-06-01), Forney, Jr.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Decoding for generalized orthogonal design for space-time... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Decoding for generalized orthogonal design for space-time..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Decoding for generalized orthogonal design for space-time... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3104965

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.