Communications: electrical – Land vehicle alarms or indicators – External alarm or indicator of movement
Reexamination Certificate
1999-11-15
2002-06-25
Wu, Daniel J. (Department: 2736)
Communications: electrical
Land vehicle alarms or indicators
External alarm or indicator of movement
C340S464000, C340S466000, C340S471000, C340S479000
Reexamination Certificate
active
06411204
ABSTRACT:
BACKGROUND OF THE INVENTION
This invention relates generally to safety lights for vehicles and, more particularly, to a safety light control to warn a driver of another vehicle of a hazardous condition associated with the subject vehicle.
Brake lights vehicles are provided on vehicles to signal drivers of other vehicles that the brake system of the subject vehicle has been actuated. In order to reduce rear end collisions, center high mounted stop lamps (CHMSL) have been added to most vehicles to further enhance visibility of the brake lamps when they are activated. However, conventional stop lamps do not relay information to following vehicles pertaining to the rate of deceleration or degree of braking of the subject vehicle.
Some proposed devices flash the stop lamp or illuminate and/or flash a separate light on the vehicle when the vehicle is braking, in order to further alert other drivers. These systems are triggered by actuation of the brake system of the vehicle, such that the flashing of the stop lamp or activation of a separate light is in addition to the activation of the conventional brake lights of the vehicle. The lamp may be flashed or modulated in response to a brake pressure of the brake system, vehicle speed, inertial forces or deceleration of the vehicle. Some of these devices further flash the stop lamp or separate light when the degree of braking is above one or more predetermined threshold levels.
To date, the proposed devices discussed above are operable to modulate the stop lamp or separate light principally when the driver of the vehicle is depressing a brake pedal or otherwise actuating the brake system of the vehicle. Accordingly, the proposed devices are not continuously operable, since they are only energized when power to the brake lights is also applied. This results in a slower response time of the system, since the system must power-up and determine if the lamp should be flashed after the brake pedal has been depressed. Not only does this result in a delay before the system will react to modulate the stop lamp or separate light, but this further results in a shorter life cycle of the system, since the system is turned on and off every time the brake pedal is depressed.
Another issue with such systems is that they are costly and difficult to implement on existing vehicles, since many of these systems include mechanical devices which are separately installed and/or must be properly oriented within the vehicle. Some embodiments have improved on the installation concerns by including the system within a light bulb module to facilitate easy installation of the system onto an existing vehicle. However, such a device fails to account for the various configurations of light sockets on different vehicles, which make it difficult to properly orient the device in many applications. Proper horizontal or vertical orientation is required for an accelerometer which may be implemented for use with the system. Also, such embodiments enhance serviceability concerns because the entire module must be replaced when the light bulb goes out.
While most of the proposed devices have not achieved commercial success, some cars today are equipped with brake light systems which flash the stop lamp automatically any time the brake pedal is depressed. However, the lamps associated with these devices may flash during ordinary braking as well as panic braking or other sudden stopping conditions. Accordingly, the stop lamp may fail to alert other drivers to emergency stopping conditions or the degree of braking of the vehicle. Furthermore, because the stop lamp may flash during every application of the brake system of the vehicle, the flashing may become annoying to many drivers over time, especially in slow moving or stop and go traffic conditions, where the stop lamp may be flashing almost continuously. Flashing the stop lamps in every stopping condition will also lose its effectiveness at warning other drivers of a stopping condition, since the drivers of other vehicles may tend to ignore the flashing light. Such systems may become especially annoying and ineffective in cases where the driver of the vehicle rests their foot on the brake pedal, thereby continuously flashing the stop lamps.
With brake actuated systems, a wire connection is required from the brake switch near the front of the vehicle to the light at the rear of the vehicle. This results in increased cost to the system and complexity in the manufacturing processes. Furthermore, serviceability of the brake light system may be compromised, since the additional wires to the light may be difficult to repair or replace. In applications where a vehicle is not manufactured with a center stop lamp, this also makes it difficult to install a rear center mounted stop lamp to the vehicle as an aftermarket device.
An additional issue with the brake actuated systems is that, in the event of a collision or accident, such as a front, rear or side impact, a rapid deceleration may occur without any depression of the brake pedal or actuation of the brake system. Accordingly, the brake or signal light will not be actuated to warn other drivers that an accident has occurred.
SUMMARY OF THE INVENTION
The present invention is intended to provide an anti-collision safety light control which adjusts or modulates an output of an exterior light of a vehicle in response to at least one, and preferably multiple, inputs associated with one or more conditions of the vehicle. Preferably, the anti-collision safety light system is a solid state device which modulates or otherwise adjusts an output of a stop lamp in response to a deceleration of the vehicle which is greater than a threshold level. Preferably the stop lamp is a center mounted stop lamp mounted on a rearward portion of the vehicle. Preferably, the stop lamp is a solid state illumination source, with a fast illumination build time, and, most preferably, the stop lamp is a light emitting diode (LED). The anti-collision safety light system is operable to modulate the stop lamp independent of vehicle braking by an operator of the vehicle.
According to an aspect of the present invention, a vehicular anti-collision safety light system for actuating at least one indicator on a vehicle comprises a microprocessor and an accelerometer, preferably a solid state accelerometer with a rapid response time. The microprocessor receives an input from the accelerometer and controls the output of the indicator in response to the input. The microprocessor controls the output of the indicator independent of a brake system of the vehicle being actuated. The accelerometer and microprocessor are preferably integrally mounted to a circuit board which is positionable on the vehicle. Preferably, the output of the indicator is variably adjusted in response to the degree of deceleration of the vehicle. Preferably, the indicator is a rearward directed center mounted stop lamp on the vehicle.
According to another aspect of the present invention, a vehicular anti-collision safety light system for providing a signal in response to at least one hazardous condition associated with a vehicle comprises at least one indicator and a microprocessor. The indicator is mountable on a rearward portion of the vehicle and is interconnected with a brake system of the vehicle, such that actuation of the brake system correspondingly activates the indicator. The microprocessor at least occasionally adjusts an output of the indicator in response to at least one electronic input. The indicator is operable in a first mode when the brake system is actuated and is further operated in a second mode when the brake system is not actuated. The microprocessor is responsive to the electronic input to at least occasionally interrupt activation of the indicator by the brake system in the first mode and to modulate the indicator in the second mode.
In one form, the vehicular anti-collision safety light system includes an accelerometer for determining an acceleration or deceleration of the vehicle. The microprocessor modulates the indicator when t
Bloomfield John
Lynam Niall R.
Donnelly Corporation
Goins Davetta W.
Van Dyke Gardner, Linn & Burkhart, LLP
Wu Daniel J.
LandOfFree
Deceleration based anti-collision safety light control for... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Deceleration based anti-collision safety light control for..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Deceleration based anti-collision safety light control for... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2942036