De-tensioning and breakdown system for a compound bow

Mechanical guns and projectors – Spring – Bow

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C124S025600, C124S088000

Reexamination Certificate

active

06253752

ABSTRACT:

FIELD OF THE INVENTION
The present invention is in the field of archery and has particular application to methods and apparatus for de-tensioning and breaking down a compound bow for such as storage and travel.
BACKGROUND OF THE INVENTION
Bow-hunting and archery target shooting are human occupations with a long history. Accordingly the technical form of bows and other archery equipment has gone through countless design and functional improvements over time from ancient age to the present day. There are many differing designs for bows. For example, single-piece long bows, typically as tall or taller than the shooter were used by Native Americans for hunting.
Later in history, laminated bows and cross-bows (a bow mounted on a triggered gun stock) were introduced, and opposing-curve bows were developed providing more power than their predecessors. Bow strength was greatly increased via lamination techniques and the opposing curve design, termed in the art a recurve design. This landmark improvement allowed the length of the bow to decrease while retaining maximum power or pull.
More recently, an innovation known as the compound bow revolutionized the institution of archery, particularly bow hunting. The compound bow is typically a tri-sectioned (two arms and a center section) bow combined with a pulley and cabling system. Designed in important instances for hunting, the compound bow is more powerful than a traditional curve bow but demands less stamina and strength from the user. Once the bowstring of a compound bow is drawn back to a prescribed distance, bow tension is significantly reduced allowing the shooter to relax before letting the arrow fly to target. This is accomplished via action of the pulley/cable system which acts to compound the power of the bow while at the same time reducing the pull strength required to let loose an arrow. The compound bow is arguably the most popular type of bow in use today.
One problem with a compound bow, however, is that it must be tuned or balanced before accurate shooting can be performed. That is, the tension on the upper arm of the bow must equal the tension on the lower arm of the bow in order for an arrow to fly accurately. To insure that proper balancing of tension is accomplished, one must shoot an arrow to see if it is on target. Tension adjusting devices are employed to equalize tension after the bow is strung. Adjustment and sighting-in is typically necessary each time a bow is unstrung and then strung again. These adjustments can be time-consuming especially for a novice.
Another problem stems from the fact that it is desired to be able to transport a bow and related accessories conveniently and compactly when the bow is not in use. Often, the size of a compound bow inconveniences the user in this regard. The bow is generally of an awkward shape, taking up significant space in transport. Some bow manufacturers have attempted to alleviate this problem by developing a hinged bow that may be folded over when not in use. However, the bow must first be unstrung, or the tension on the bow somehow released before the bow may be folded, because the tensioned bow imposes significant forces on the hinge in the bow stock, and once set up again, the bow must also be re-tensioned (compound bow) and re-sighted before it will shoot with accuracy.
What is clearly needed is a de-tensioning and breakdown system that will allow a compound bow to be broken-down to smaller components or sections and stowed without requiring re-tensioning, re-tuning, and re-aiming of the bow to its previous operational state.
SUMMARY OF THE INVENTION
In a preferred embodiment of the present invention a break-down bow is provided, comprising a center section, a first flexible arm extending from the center section in a first direction; a second flexible arm extending from the center section in a direction substantially opposite the first direction, the first and second flexible arms and the center section substantially describing a bow plane; a separation interface in the center section having a fastening mechanism adapted as fastened to retain the bow in a usable aspect, and as unfastened to allow the bow to separate at the separation interface into the two separate sections; and a first connector mechanism adapted to connect between a first point on or attached to the first flexible arm away from the center section and to a second point on the same side of the separation interface as the first point, and adapted to be selectively engaged by a user with the first flexible arm sufficiently flexed to remove all forces from the separation interface in the center section, the first connector mechanism, engaged, then retaining the first flexible arm in the flexed position such that the separation interface may be released and the bow folded.
In one embodiment the first point and the second point are both on or attached to the first flexible arm, and the second point is on the center section. In preferred embodiments the first connector mechanism is a first link pivoted at the first point and adapted to latch at the second point with the first flexible arm flexed to a sufficient degree to release all force on the separation interface in the center section. The latching may be by a male-and-female latching mechanism provided at the second point. In some cases the link is pivoted by a quick-release pivot mechanism wherein, with the link unlatched, the link may be removed from the bow entirely by disengaging the quick-release pivot mechanism.
In an alternative embodiment the first connector mechanism is adapted to be engaged with the first flexible arm flexed sufficiently to remove a first portion of forces imposed on the separation interface, and there is a second connector mechanism adapted to connect between a third point on or attached to the second flexible arm away from the center section and to a fourth point on the same side of the separation interface as the third point, and adapted to be selectively engaged by a user with the second flexible arm partly flexed to remove a second portion forces imposed on the separation interface, such that the first portion of forces and the second portion of forces together equal at least the magnitude of forces on the separation interface, the first and second connector mechanisms, engaged, then retaining the flexible arms in flexed positions such that the separation interface may be released and the bow separated into the two separate sections.
In one manifestation of this alternative the first point and the second point are both on or attached to the first flexible arm, and the third point and the fourth point are both on or attached to the second flexible arm. In another the first point is on or attached to the first flexible arm, the second point is on the center section on the same side of the separation interface as the first point, the third point is on or attached to the second flexible arm, and the fourth point is on the center section on the same side of the separation interface as the third point.
The bow with two connector links is set up to provide a portion of tension release by one mechanism and another portion by the other mechanism. The links may latch by male-female latching devices. Also in preferred embodiments, whether one link or more is used, the links may be removed when not in use, if desired, by virtue of quick-release pivot points. In yet another preferred embodiment the separation interface incorporates a hinge, whereby the two separate sections may remain connected when the bow is broken down, and be folded over around the hinge.
In another embodiment of the present invention, the break-down bow includes upper and lower bow limbs each of which consists of a pair of spaced, side-by-side limb elements, such as the spaced side-by-side limb elements disclosed in U.S. Pat. No. 5,720,267, “Archery Bow With Limb Mounting Pockets”. In this embodiment, the connection mechanism which is the same for both the upper and lower bow limbs, comprises at one end a spaced, side-by-side recurve limb strap which fits over

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

De-tensioning and breakdown system for a compound bow does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with De-tensioning and breakdown system for a compound bow, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and De-tensioning and breakdown system for a compound bow will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2567885

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.