DC-to-DC converter having hysteretic current limiting

Electricity: power supply or regulation systems – Output level responsive – Using a three or more terminal semiconductive device as the...

Patent

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

323283, 323285, G05F 159

Patent

active

058084550

ABSTRACT:
A DC-to-DC converter having hysteretic inductor current limiting and that does not have a resistor continuously carrying the inductor current. A voltage supply is coupled to a drain of a first transistor. A source of the first transistor is coupled to a first terminal of the inductor and to a drain of a second transistor. A source of the second transistor is coupled to ground through a resistor. A second terminal of the inductor is coupled to a first terminal of a capacitor. When the first transistor is on, the second transistor is off, causing current in the inductor to increase. The current flowing through the inductor charges the capacitor, and stores energy in the inductor as an increasing magnetic field. When the first transistor is off, the second transistor is on, and the stored energy is converted back into current, continuing to charge the capacitor. Voltage across the capacitor is regulated for powering a load by controlling the first and second transistors in a feedback loop. When the first transistor is off and the second transistor is on, a voltage across the resistor in series with the second transistor forms a signal representative of the inductor current. When the inductor current is higher than a first threshold at the start of a discharge cycle, the discharge cycle is extended until the inductor current falls below a second threshold, lower than the first threshold. Thus, the inductor current is hysteretically limited to prevent excessive current from damaging circuit elements.

REFERENCES:
patent: 3294981 (1966-12-01), Bose
patent: 3603809 (1971-09-01), Uchiyama
patent: 3660753 (1972-05-01), Judd et al.
patent: 3883756 (1975-05-01), Dragon
patent: 4392103 (1983-07-01), O'Sullivan et al.
patent: 4407588 (1983-10-01), Arichi et al.
patent: 4437146 (1984-03-01), Carpenter
patent: 4456872 (1984-06-01), Froeschle
patent: 4529927 (1985-07-01), O'Sullivan et al.
patent: 4651231 (1987-03-01), Douglas, Jr.
patent: 4672303 (1987-06-01), Newton
patent: 4672518 (1987-06-01), Murdock
patent: 4677366 (1987-06-01), Wilkinson et al.
patent: 4691159 (1987-09-01), Ahrens et al.
patent: 4731574 (1988-03-01), Melbert
patent: 4736151 (1988-04-01), Dishner
patent: 4761725 (1988-08-01), Henze
patent: 4841220 (1989-06-01), Tabisz et al.
patent: 4920309 (1990-04-01), Szepesi
patent: 4929882 (1990-05-01), Szepesi
patent: 4941080 (1990-07-01), Sieborger
patent: 4947309 (1990-08-01), Jonsson
patent: 4975823 (1990-12-01), Rilly et al.
patent: 5028861 (1991-07-01), Pace et al.
patent: 5034873 (1991-07-01), Feldtkeller
patent: 5138249 (1992-08-01), Capel
patent: 5146399 (1992-09-01), Gucyski
patent: 5278490 (1994-01-01), Smedley
patent: 5359281 (1994-10-01), Barrow et al.
patent: 5412308 (1995-05-01), Brown
patent: 5414341 (1995-05-01), Brown
patent: 5434767 (1995-07-01), Batarseh et al.
patent: 5440473 (1995-08-01), Ishii et al.
patent: 5457621 (1995-10-01), Munday et al.
patent: 5457622 (1995-10-01), Arakawa
patent: 5461302 (1995-10-01), Garcia et al.
patent: 5479089 (1995-12-01), Lee
patent: 5485361 (1996-01-01), Sokal
patent: 5491445 (1996-02-01), Moller et al.
patent: 5502370 (1996-03-01), Hall et al.
patent: 5532577 (1996-07-01), Doluca
patent: 5552695 (1996-09-01), Schwartz
patent: 5565761 (1996-10-01), Hwang
patent: 5568041 (1996-10-01), Hesterman
patent: 5592071 (1997-01-01), Brown
patent: 5592128 (1997-01-01), Hwang
patent: 5617306 (1997-04-01), Lai et al.
patent: 5627460 (1997-05-01), Bazinet et al.
"Nonlinear-Carrier Control for High Power Factor Rectifiers Based On Flyback, Cuk, or Sepic Converters," R. Zane and D. Maksimovic, Applied Power Electronics Conf., pp. 814-820, 1996.
"Nonlinear-Carrier Control for High Power Factor Boost Rectifiers," D. Maksimovic, Y. Jang, and R. Erickson, Applied Power Electronics Conf., pp. 635-641, 1995.
"ML4863 High Efficiency Flyback Controller", Micro Linear Corporation, pp. 1-8, Feb. 1995 (Preliminary).
"ML4863EVAL User's Guide High Efficiency Flyback Controller", Micro Linear Corporation, pp. 1-5, Feb. 1995.
"Off-Line And One-Cell IC Converters Up Efficiency," Frank Goodenough, Electronic Design, pp. 55-56, 58, 60, 62-64, Jun. 27, 1994.
"Designing with hysteretic current-mode control," Gedaly Levin and Kieran O'Malley, Cherry Semiconductor Corp., EDN, pp. 95-96, 98, 100-102, Apr. 28, 1994.
"Analysis of the Flyback Converter Operating in Current-Mode Pulse-Frequency Modulation," Urs Mader and K. Kit Sum, High Frequency Power Conversion, Apr. 17, 1994.
"Step-Up/Step-Down Converters Power Small Portable Systems," Bruce D. Moore, EDN, pp. 79-82, 84, Feb. 3, 1994.
"ML4861 Low Voltage Boost Regulator," Micro Linear Corporation, Jun. 1993.
"11. Variable Frequency Converters," K. Kit Sum, pp. 96-97, 135-135, 1993.
"3.3V/5V/Adjustable Output, Step-Up, DC-DC Converters," Maxim Integrated Products, pp. 1-8, Jun. 1993.
"ML4821 Power Factor Controller," Micro Linear Corporation, pp. 6-119 to 6-126, Jun. 1992 (Preliminary).
"ML4821EVAL Average Current PFC Controller Evaluation Kit," Micro Linear Corporation, p. 6-127, Jul. 1992.
"ML4821 Power Factor Controller," Micro Linear Corporation, pp. 1-12, May 1997.
"Application Note 16--Theory and Application of the ML4821 Average Current Mode PFC Controller," Micro Linear Corporation, pp. 10-102 to 10-119, Jan. 1992.
"Small-Signal High-Frequency Analysis Of The Free-Running Current-Mode-Controlled Converter," Richard Redl, pp. 897-906, IEEE, 1991.
"Low-Voltage-Input, 3V/3.3V/5V/Adjustable-Output, Step-Up DC-DC Converters," Maxim Integrated Products, pp. 4-189 to 4-191 (no date).
"LT1073 Micropower DC-DC Converter Adjustable and Fixed 5V, 12V" Linear Technology, pp. 4-174 to 4-189, 4-192, (no date).
"Application Note 30," Linear Technology, p. AN30-42, (no date).
"System-Engineered Portable Power Supplies Marry Improved Efficiency And Lower Cost," Bruce D. Moore, Maxim Integrated Products (no date).
"ML4823 High Frequency Power Supply Controller," Micro Linear Corporation, pp. 1-8, Dec. 1994 (Preliminary).
"CD54/74HC 4046A, CD54/74HCT 4046A Technical Data," File No. 1854, RCA, (no date).
"ML4863 High Efficiency Battery Pack Converter," Micro Linear Corporation, p. 1, Jun. 1994 (Preliminary).
"ML4880 Portable PC/PCMCIA Power Controller," Micro Linear Corporation, p. 1, Oct. 1995 (Preliminary).

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

DC-to-DC converter having hysteretic current limiting does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with DC-to-DC converter having hysteretic current limiting, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and DC-to-DC converter having hysteretic current limiting will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-92081

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.