Database interface mechanism

Computer graphics processing and selective visual display system – Display driving control circuitry – Controlling the condition of display elements

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C345S960000, C707S793000

Reexamination Certificate

active

06369839

ABSTRACT:

BACKGROUND OF THE INVENTION
This invention is related to the subject matter of my U.S. Pat. No. 4,859,187, issued Aug. 22, 1989, entitled Database Management Enhancement Device, and my U.S. Pat. No. 5,452,468, issued Sep. 19, 1995, entitled, Computer System With Parallel Processing For Information Organization. The subject matter of this invention continues the theme that was set forth in a continuation-in-part application Ser. No. 08/191,981 to U.S. Pat. No. 5,452,468, and disclosure document No. 413732. The continuation-in-part application adds new matter to the original filing relating to a thousand cell cubic cell block and the introduction of a picoblock, which is a 32 bit by 32 bit by 32 bit data cube boxed in a 1 bit thick shell.
The invention here disclosed relates to a 3-dimensional cell structure for containing picoblocks. The cell structure is based on the number 2
24
, or 16,777,216. This moderately large number is useful for creating a conceptual meta structure that is easily visualized for location and storage of picoblocks. For example, each picoblock could represent an abstract of data from a separate U.S. patent. Similar data from foreign patents can be included, so that the structure can incorporate all indexed U.S. and foreign patents for location and retrieval in a scheme that is easily visualized and accessible to a novice user.
By maximizing the potential of the number 2
32
which is used as the maximum address number in 32 bit word size in computer processing, we can consider the 2
24
as a template and construct 256 of these template structures. In this manner, over four billion information objects can be classified and organized according to predefined attributes of the information, assigned to one of the 256 template structures, and located in the appropriate cell of the 16 million plus cell structure. This cell structure in its preferred incarnation is called a memory chalice.
SUMMARY OF INVENTION
The memory chalice is a conceptual interface mechanism for management and storage of memory objects. The memory chalice, so named because of the vague resemblance of the basic structure to a chalice, extends the theme of Mateo Ricci, the 16th century Jesuit, who created the “memory palace”, as a repository for mental objects he wished to recall. Ricci's memory palace was in part devised, while he was a missionary in China, to learn Han pictographs.
The new concept for consideration is that information objects have innate charm, and that by qualifying and quantifying an object's natural charm, we can locate the object in a logical memory structure.
Our logical memory structures are expressions of big numbers significant in digital computing. First, our memory universe is based on the binary number 2
32
, which is more than 4 billion, giving us over four billion locations for storage of memory objects. Second, our universe is divided into four galaxies, each galaxy having 64 worlds. Each world in turn, is an expression of the binary number 2
24
, which gives us the more manageable number, 16,777,216, for building a memory palace. Finally, in constructing a symmetrical 3-D memory structure out of 16,777,216 perfect cubes, the memory palace takes the form of an hourglass or chalice. This memory chalice becomes the template for the 256 worlds in our memory universe.
If we accept the notion that objects having similar charm tend to hang out together, then a few well-placed archetype icons of charm will tend to influence the grouping and accumulation of other similarly charmed objects.
Charm is believed universal. Experience in collecting beach pebbles for stone mosaics teaches that this thing called “charm” attracts the eye and induces discriminating selection of one object among millions. The concept of charm can be similarly applied to information objects. The memory chalice then becomes a meta directory or universal index for locating memory objects.
In digital computing, the bit is the smallest element and is usually represented as a “1” or “0”. While this makes the mathematician happy, it's tough to visualize. If instead we think of the bit as a perfect black or white cube, we can create boxes to contain these cubes. The one-size-fits-all box for objects in our memory chalice is called the picoblock.
Picoblocks are bit cubes 32 bits on a side wrapped in a one-bit thick shell. Charm in our universe is superficial and is carried in pictures, symbols and tags on the shell. Think of children's alphabet blocks with colored letters, numbers and animals on the six sides of each block.
Picoblocks are stashed in cell blocks, the basic storage container in the chalice structure for holding a picoblock. Cell blocks are assembled into alpha blocks, which are cubes of 1000 cell blocks, and beta blocks, cubes of 1,000,000 blocks.
Qualifying and quantifying an object's charm aids in the association of objects with objects and in the arrangement of objects in our object structure.
The devil is in the details and the details are in the drawings.


REFERENCES:
patent: 4859187 (1989-08-01), Peterson
patent: 5359724 (1994-10-01), Earle
patent: 5452468 (1995-09-01), Peterson
patent: 5592666 (1997-01-01), Perez

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Database interface mechanism does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Database interface mechanism, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Database interface mechanism will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2853858

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.