Stock material or miscellaneous articles – Circular sheet or circular blank
Reexamination Certificate
2000-06-05
2003-03-25
Kelly, Cynthia H. (Department: 1774)
Stock material or miscellaneous articles
Circular sheet or circular blank
C428S064600, C428S064700, C528S196000, C362S273000
Reexamination Certificate
active
06537636
ABSTRACT:
FIELD OF THE INVENTION
This invention relates to clear blends of polycarbonates suitable for use in optical articles. This invention further relates to optical articles, and methods for making optical articles from the clear blends.
In addition to use as optical articles, the blends of the invention are useful in producing clear articles of manufacture having good properties. These properties include food chemical resistance and melt processibility. These blends are especially useful for making clear molded articles, fibers, films and sheeting.
BACKGROUND OF THE INVENTION
Polycarbonates and other polymer materials are utilized in optical data storage media, such as compact disks. In optical data storage media, it is critical that polycarbonate resins have good performance characteristics such as transparency, low water affinity, good processibility, good heat resistance and low birefringence. High birefringence is particularly undesirable in high density optical data storage media.
Improvements in optical data storage media, including increased data storage density, are highly desirable, and achievement of such improvements is expected to improve well established and new computer technology such as read only, write once, rewritable, digital versatile and magneto-optical (MO) disks.
In the case of CD-ROM technology, the information to be read is imprinted directly into a moldable, transparent plastic material, such as bisphenol A (BPA) polycarbonate. The information is stored in the form of shallow pits embossed in a polymer surface. The surface is coated with a reflective metallic film, and the digital information, represented by the position and length of the pits, is read optically with a focused low power (5 mW) laser beam. The user can only extract information (digital data) from the disk without changing or adding any data. Thus, it is possible to “read” but not to “write” or “erase” information.
The operating principle in a write once read many (WORM) drive is to use a focused laser beam (20-40 mW) to make a permanent mark on a thin film on a disk. The information is then read out as a change in the optical properties of the disk, e.g., reflectivity or absorbance. These changes can take various forms: “hole burning” is the removal of material, typically a thin film of tellurium, by evaporation, melting or spalling (sometimes referred to as laser ablation); bubble or pit formation involves deformation of the surface, usually of a polymer overcoat of a metal reflector.
Although the CD-ROM and WORM formats have been successfully developed and are well suited for particular applications, the computer industry is focusing on erasable media for optical storage (EODs). There are two types of EODs: phase change (PC) and magneto-optic (MO). In MO storage, a bit of information is stored as a ~1 &mgr;m diameter magnetic domain, which has its magnetization either up or down. The information can be read by monitoring the rotation of the plane polarization of light reflected from the surface of the magnetic film. This rotation, called the Magneto-Optic Kerr Effect (MOKE) is typically less than 0.5 degrees. The materials for MO storage are generally amorphous alloys of the rare earth and transition metals.
Amorphous materials have a distinct advantage in MO storage as they do not suffer from “grain noise”, spurious variations in the plane of polarization of reflected light caused by randomness in the orientation of grains in a polycrystalline film. Bits are written by heating above the Curie point, T
c
, and cooling in the presence of a magnetic field, a process known as thermomagnetic writing. In the phase-change material, information is stored in regions that are different phases, typically amorphous and crystalline. These films are usually alloys or compounds of tellurium which can be quenched into the amorphous state by melting and rapidly cooling. The film is initially crystallized by heating it above the crystallization temperature. In most of these materials, the crystallization temperature is close to the glass transition temperature. When the film is heated with a short, high power focused laser pulse, the film can be melted and quenched to the amorphous state. The amorphized spot can represent a digital “1” or a bit of information. The information is read by scanning it with the same laser, set at a lower power, and monitoring the reflectivity.
In the case of WORM and EOD technology, the recording layer is separated from the environment by a transparent, non-interfering shielding layer. Materials selected for such “read through” optical data storage applications must have outstanding physical properties, such as moldability, ductility, a level of robustness compatible with popular use, resistance to deformation when exposed to high heat or high humidity, either alone or in combination. The materials should also interfere minimally with the passage of laser light through the medium when information is being retrieved from or added to the storage device.
As data storage densities are increased in optical data storage media to accommodate newer technologies, such as digital versatile disks (DVD) and higher density data disks for short or long term data archives, the design requirements for the transparent plastic component of the optical data storage devices have become increasingly stringent. In many of these applications, previously employed polycarbonate materials, such as BPA polycarbonate materials, are inadequate. Materials displaying lower birefringence at current, and in the future progressively shorter “reading and writing” wavelengths have been the object of intense efforts in the field of optical data storage devices.
Low birefringence alone will not satisfy all of the design requirements for the use of a material in optical data storage media; high transparency, heat resistance, low water absorption, ductility, high purity and few inhomogeneities or particulates are also required. Currently employed materials are found to be lacking in one or more of these characteristics, and new materials are required in order to achieve higher data storage densities in optical data storage media. In addition, new materials possessing improved optical properties are anticipated to be of general utility in the production of other optical articles, such as lenses, gratings, beam splitters and the like.
Birefringence in an article molded from polymeric material is related to orientation and deformation of its constituent polymer chains. Birefringence has several sources, including the structure and physical properties of the polymer material, the degree of molecular orientation in the polymer material and thermal stresses in the processed polymer material. For example, the birefringence of a molded optical article is determined, in part, by the molecular structure of its constituent polymer and the processing conditions, such as the forces applied during mold filling and cooling, used in its fabrication which can create thermal stresses and orientation of the polymer chains.
The observed birefringence of a disk is therefore determined by the molecular structure, which determines the intrinsic birefringence, and the processing conditions, which can create thermal stresses and orientation of the polymer chains. Specifically, the observed birefringence is typically a function of the intrinsic birefringence and the birefringence introduced upon molding articles, such as optical disks. The observed birefringence of an optical disk is typically quantified using a measurement termed “in-plane birefringence” or IBR, which is described more fully below.
For a molded optical disk, the IBR is defined as:
IBR=(
n
r
−n
&thgr;
)
d=&Dgr;n
r&thgr;
d
(3)
where n
r
and n
&thgr;
are the refractive indices along the r and &thgr; cylindrical axes of the disk; n
r
is the index of refraction seen by a light beam polarized along the radial direction, and n
&thgr;
is the index of refraction for light polarized azimuthally to the plane of the disk. The thickness of the disk is given by
Davis Gary Charles
Dris Irene
Hariharan Ramesh
Hubbard Steven Frederick
Rijken Cornelis Jan Maria
Brown S. Bruce
Ferguson L.
General Electric Company
Johnson Noreen C.
Kelly Cynthia H.
LandOfFree
Data storage media containing clear polycarbonate blends does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Data storage media containing clear polycarbonate blends, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Data storage media containing clear polycarbonate blends will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3085677