Photography – With data recording – Optical
Reexamination Certificate
2000-12-28
2003-01-14
Gray, David M. (Department: 2851)
Photography
With data recording
Optical
C396S317000, C396S318000
Reexamination Certificate
active
06507710
ABSTRACT:
FIELD OF THE ART
The present invention relates to an optical data recording device for recording data, such as date, optically in a photographed frame on a photo filmstrip, and a camera with the optical data recording device, wherein the camera includes a lens-fitted photo film unit that does not allow the user to load a filmstrip.
BACKGROUND ARTS
A camera comprising an optical data recording device for optically recording date data, like the date and time of photography, on a filmstrip has been known. It is desirable to introduce the optical data recording device into a lens-fitted photo film unit, hereinafter referred to as a film unit, wherein an unexposed photo filmstrip is previously loaded in a unit body that has simple photographic mechanisms incorporated therein. In one type of the optical data recording device, data is recorded from a front or emulsion side of the photo filmstrip. In another type of the optical data recording device, data is recorded from a rear or base side of the photo filmstrip. In either type, the date data is ordinary recorded in a position slightly displaced from a corner toward a center.
In the type where data is recorded from the rear side of the photo filmstrip, a display panel, e.g. an LCD panel, that displays data to record, e.g. the date of photography, as transparent characters is placed in proximity to the rear side of the photo filmstrip. The display panel is illuminated from the rear side in synchronism with activation of a shutter, so light travelling through the display panel is directly used for recording data in the photographed frame. Another kind of this type uses a display panel that is constituted of light emitting diodes or the like, to record data in the photographed frame by projecting light directly from the light emitting diodes. This type does not need any optical system for forming an image of the displayed content on the display panel onto the photo filmstrip.
However, because the optical data recording device of this type comprises the display panel and the lamp for illuminating the display panel, and must be provided on a rear lid of the camera or on a rear cover of the film unit, it has a disadvantage of making the camera or the film unit thicker. Beside that, for synchronizing the data recording with the photographing, it is necessary to interconnect the optical data recording device with those circuits and mechanisms which are located on the front side of the photo filmstrip, though the optical data recording device is located on the rear side of the photo filmstrip. So the number of parts is increased, and wiring between these parts needs complicated manufacturing processes or increased number of processes, thereby increasing the cost of manufacture.
On the other hand, in the type where data is recorded from the front side of the photo filmstrip, an projection lens is placed between the display panel and the emulsion surface of the photo filmstrip, to project an image of data displayed on the display panel onto the photo filmstrip. Because the projection lens is used, and also a sufficient space is provided between the display panel and the photo filmstrip by virtue of the thickness of the camera body, it is possible to record a sharp image of the data.
As an optical data recording device of the type where data is photographed from the front side of the photo filmstrip, there is one that suggested by the present applicant (Japanese Patent Application No. 9-141249). This data recording device is provided with a shutter aperture for data that is located near a shutter aperture for photography, through which subject light is conducted to the photo filmstrip, and a display panel and an projection lens are placed before and behind the shutter aperture for data. The shutter aperture for data is opened and closed by a data shutter member that is formed integrally with a shutter blade for the shutter aperture for photography. According to this configuration, it is possible to record data as displayed on the display panel optically onto the photo filmstrip by projecting light traveling through the display panel through the projection lens onto the filmstrip, while the shutter aperture for data is opened in synchronism with the photography.
Among presently marketed cameras, there are ones that permit designating a print size at the photography so that photo prints of different aspect ratios may be obtained from frames photographed on the same photo filmstrip. One method of designating the print size is actually changing the exposure area on the photo filmstrip by switching a print size switching member. Another method of designating the print size is optically recording a corresponding mark to the designated print size onto the filmstrip outside the exposure area of a constant size, wherein the photographed frame is trimmed for printing. To record date data optically at a proper position for the designated print size, it is necessary to change the position to project the date data in cooperation with the change in print size. In the conventional data recording device, data display position on the display panel is shifted relative to the projection lens, or a switching mirror is provided between the projection lens and the photo filmstrip to adjust the projecting position by changing the angle of the switching mirror. However, these switching mechanisms for the optical data recording device are so complicated and requires so much mounting space and accuracy that it has been hard to turn them to practical use.
In the Advanced Photo System (APS) that has recently been put into practice and marketed, the photo filmstrip and the camera permit producing photo prints of different aspect ratios from that of a standard size frame, though all frames are photographed in the standard size, by recording magnetic data for each individual frame to designate an aspect ratio of photo prints on a transparent magnetic recording layer that is formed on the base side of the filmstrip. In the APS, a standard exposure area or standard size frame on the photo filmstrip has the same aspect ratio as a hi-vision (H) size photo print (89×158 mm), so a conventional (C) size photo print (89×127 mm) is produced from a photograph area that is obtained by restricting the standard size frame from left and right, i.e. in a lengthwise direction of the frame, whereas a panoramic (P) size photo print (89×254 mm) is produced from a photograph area that is obtained by restricting the standard size frame from top and bottom, i.e. in a widthwise direction of the frame. It is to be noted that the lengthwise direction of the frame is identical to the lengthwise direction of the filmstrip.
The camera of the APS may also records data such as the date of photography magnetically on the magnetic recording layer of the photo filmstrip, so the data may be read out on the printing to print the data at a designated position on a photo print. For the magnetic recording, however, a magnetic head and a circuit for driving and controlling the magnetic head are needed. These elements are so expensive that it is practically impossible to introduce the magnetic recording function to low-price cameras or the film units.
In the APS, insofar as the exposure area through the taking lens is fixed to be the standard frame size, it is possible to select any one of the print sizes: H, P and C sizes, after the photography, for example at the time of ordering photo prints, even though the pictures are photographed through such a camera or a film unit that does not permit switching the print size at the photography, e.g. those specific to the C size. For the sake of printing the data, such as the date of photography, within the photo print even when the C size print is designated, it is necessary to optically record the data within the corresponding area to the C size, called C size frame area, of the standard frame.
As described above, the left and right margins of the C size frame area is located closer to an optical axis of the taking lens, in comparison with the left an
Koike Kazumi
Moriya Mitsuhiro
Fuji Photo Film Co. , Ltd.
Gray David M.
Young & Thompson
LandOfFree
Data recording device and camera with data imaging device does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Data recording device and camera with data imaging device, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Data recording device and camera with data imaging device will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3003724