Telephonic communications – Diagnostic testing – malfunction indication – or electrical... – Monitoring
Reexamination Certificate
1998-11-10
2002-05-07
Nguyen, Duc (Department: 2643)
Telephonic communications
Diagnostic testing, malfunction indication, or electrical...
Monitoring
C379S032020, C379S112010, C379S112070, C379S133000, C379S134000
Reexamination Certificate
active
06385301
ABSTRACT:
TECHNICAL FIELD
The present invention relates to a method and system for accumulating call specific data for network communication and analyzing that data for a variety of purposes, for example to identify network traffic patterns, to identify specific types of users, etc.
ACRONYMS
The written description uses a large number of acronyms to refer to various services, messages and system components. Although generally known, use of several of these acronyms is not strictly standardized in the art. For purposes of this discussion, acronyms therefore will be defined as follows:
Address Complete Message (ACM)
Advanced-Intelligent Network (AIN)
Asynchronous Digital Signal Line (ADSL)
ANswer Message (ANM)
Application Service Part (ASP)
Automatic Message Accounting (AMA)
Automatic Number Identification (ANI)
BellCore AMA Format (BAF)
Carrier Access Billing System (CABS)
Call Processing Record (CPR)
Call Detail Record (CDR)
Carrier Identification Code (CIC)
Centi-Call Second (CCS)
Central Office (CO)
Competitive Local Exchange Carrier (CLEC)
Common Channel Interoffice Signaling (CCIS)
Common Language Location Identifier (CLLI)
Comma Separated Values (CSV)
Customer Record Information System (CRIS)
Destination Point Code (DPC)
End Office (EO)
Engineering and Administrative Data Acquisition System (EADAS)
Executive Information System (EIS)
Fill In Signal Unit (FISU)
First-In, First-Out (FIFO)
Global Title Translation (GTT)
Graphical User Interface (GUI)
HyperText Mark-up Language (HTML)
HyperText Transfer Protocol (HTTP)
Initial Address Message (IAM)
Integrated Service Control Point (ISCP)
Integrated Services Digital Network (ISDN)
ISDN User Part (ISDN-UP or ISUP)
Inter-exchange Carrier (IXC)
Internet Service Provider (ISP)
Landing Zone (LZ)
Line Identification Data Base (LIDB)
Link Service Signaling Unit (LSSU)
Local Exchange Carrier (LEC)
Loop Maintenance Operations Systems (LMOS)
Main Station (MS)
Message Processing Server (MPS)
Message Signaling Unit (MSU)
Message Transfer Part (MTP)
Multi-Dimensional DataBase (MDDB)
Multi-Services Application Platform (MSAP)
Network Administration Center (NAC)
Numbering Plan Area (NPA)
Office Equipment (OE)
Online Analytical Processing (OLAP)
Origination Point Code (OPC)
Operations, Maintenance Application Part (OMAP)
Percentage Internet Usage (PIU)
Personal Computer (PC)
Public Switching Telephone Network (PSTN)
Release Complete Message (RLC)
Release Message (REL)
Revenue Accounting Office (RAO)
Service Control Point (SCP)
Service Switching Point (SSP)
Signaling Connection Control Part (SCCP)
Signaling Link Selection (SLC)
Signaling System 7 (SS7)
Signaling Point (SP)
Signaling Transfer Point (STP)
Structured Query Language (SQL)
Transaction Capabilities Applications Part (TCAP)
Wide Area Network (WAN)
BACKGROUND ART
An essential problem in optimizing a telecommunications network is balancing equipment and trunking against service and cost. Network design involves predicting future demand based on past results, evaluating the capacity of equipment and facilities, and providing the correct amount of capacity in the proper configuration, in time to meet service objectives. Since virtually every element of a telecommunications system is subject to failure or overload effective testing, monitoring, control, and maintenance is essential to obtain an acceptable level of performance.
Rapid changes and increases in demand for telecommunication services increase the pressures for cost effective engineering and upgrading of the telephone network. Two examples of particular concern relate to Internet access traffic and what is now referred to as “CLEC” traffic.
The sudden increase in popularity of access to the Internet has radically changed the loading placed on the telephone network. Normal voice telephone calls tend to occur at random times, and the network typically routes the majority of such calls to random destinations. Also, the average hold times for such calls tend to be short, e.g. three minutes. By contrast Internet traffic tends to have severe peak traffic times during any given twenty-four hour period, e.g. from 8:00PM to 11:00PM. Also, the network must route Internet access calls to a very small number of destinations, i.e. to the lines for modem pools operated by Internet Service Providers (ISPs). Instead of many parties calling each other randomly, many callers are all calling in to a limited number of service providers. Finally, hold times for Internet calls can last for hours. Some Internet users access the Internet when they sit down at the desk and leave the call connection up until they decide to turn their computers off, e.g. at the end of their day. If they leave their computers on all the time, the connections to the ISPs may stay up for days. These Internet traffic patterns add incredibly heavy traffic loads to the telephone network and tend to concentrate those loads in specific offices providing service to the ISPs.
Another new demand burdening the local exchange carrier (LEC) relates to traffic to and from a competitive local exchange carrier (CLEC). The LEC must provide tandem capacity and trunking to the CLEC exchanges, to carry the new traffic in transit between the two carriers' networks. The CLECs demand that the LEC provide sufficient capacity to minimize blockages on calls to and from the CLEC networks. Disputes also arise over the amount and direction of such traffic, for example, as it relates to billing and compensation issues.
Adding end offices, specialized switching modules, trunks, tandem offices and the like to meet new demands such as those of Internet access and CLEC interconnection requires considerable expense. Accurate engineering, to minimize cost and yet provide effective service to the various customers, becomes ever more essential. To provide effective engineering, it is necessary that the LEC understand the traffic involved. Such understanding requires accurate and complete traffic measurement. Accurate information also is necessary to resolve disputes, for example with the ISPs over service quality or with CLECs over compensation.
U.S. Pat. No. 5,475,732 issued to Eugene Pester Dec. 12, 1995, for Common Channeling Signaling Network Maintenance and Testing, describes an SS7 Network Preventative Maintenance System for detecting potential SS7 and switched network troubles, automatically analyzing the troubles, and providing alarm and corrective action to avoid major network events. The Pester SS7 Real Time Monitor System described in that patent is a multi-stage SS7 network preventative maintenance tool that detects potential SS7 and switched network troubles, automatically analyzes those troubles, and provides alarm and corrective action instructions to maintenance personnel in time to avoid a major network event. This is accomplished by placing real time SS7 monitors on links at the Signal Transfer Points (STPs).
Information on exceeded Link Load, exceeded Message Signaling Unit (MSU) frequency and Network Management status/error conditions is passed to a Stage 1 controller or process. The Stage 1 process controls link monitors capable of monitoring upwards of 32 link monitors at a single STP. The monitors perform preliminary link analysis on error conditions. If the monitors identify trouble on any of the links, alarm information is sent to a Stage 2 controller or process via the Stage 1 process. The Stage 2 process controls all Stage 1 and associated monitors from an STP pair. If Stage 2 determines that there is an STP pair network trouble, it generates alarm and corrective action information and passes it to the Stage 3 controller or process. The Stage 3 process controls all Stage 2 controllers or processes in the operating company. If Stage 3 determines that there is potential or real company network trouble, it generates alarm and corrective action information and display signals on maintenance terminals in the company's SS7 control center. Stage 3 also alerts the Stage 4 controller process.
U.S. Pat. No. 5,592,530 issued to Brockman et al (Brockman) on Jan. 7, 1997 for Telephone Switch Dual
Dion Karen
LaPearl Richard
Nolting Thomas A.
Bell Atlantic Services Network, Inc.
Nguyen Duc
Tran Quoc D.
LandOfFree
Data preparation for traffic track usage measurement does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Data preparation for traffic track usage measurement, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Data preparation for traffic track usage measurement will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2878809