Data, path and flow integrity monitor

Pulse or digital communications – Testing

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C370S248000, C370S251000, C714S728000, C714S739000

Reexamination Certificate

active

06490317

ABSTRACT:

FIELD
The present invention relates to an apparatus and method for monitoring the integrity of data, path and flow for digital pulse code modulated (PCM) switching systems to ensure correct operation.
BACKGROUND
In large digital PCM switching systems, one must monitor the switching system to ensure that it is operating correctly. Because of the large number of PCM channels that may be routed by a relatively small amount of circuitry, the core of the switching system is typically duplicated to provide redundancy so as to increase the availability of the system. Typically, two planes of switching circuitry operate simultaneously, with one plane acting as a hot standby for the other. PCM data from each source is routed to both switching planes and at each destination, circuitry selects PCM data from one of the switching planes, falling back to the other switching plane if required. In order to benefit from this redundancy, one must be able to detect a failure in the active switching plane and quickly switch over to the still functional switching plane while the failed switching plane is taken out of service so that failed circuits can be identified and replaced without affecting service (provided that another fault does not occur in the still functional switching plane while it is operating without a backup). Thus, rapid detection and diagnosis of a fault is required to minimize “downtime” of the PCM switching capability.
In typical PCM switching systems, data to be routed through the switch consists of an 8-bit PCM sample. Such samples are normally presented to the switching system at an 8 kHz rate, and are often grouped into time division multiplexed (TDM) frames carrying multiple PCM sample streams, where the frame repetition rate is 8 kHz. In many cases a lower bit rate channel is routed together with the PCM sample in order to carry signalling information. Modern systems usually allow for four state signalling and, thus require 4 bits to encode the signalling state. With frames being transmitted at 8 kHz there is a 125 microsecond interval between one frame and the next. With a requirement that PCM data be transmitted at a 64 kbit/s rate, this requires transmission of.8 bits every 125 microseconds or, in other words, one 8 bit word every frame. The requirement for signalling throughput is only 1.333 kbit/s in North America and 2 kbit/s in Europe and elsewhere. This means that transmitting only 1 bit per frame of signalling data would be more than adequate. Both requirements could be met by transmitting a 9-bit word every frame with one bit being of signalling data and the other 8 bits being PCM data. In fact, only 4 bits need be sent every 16 to 24 frames (referred to as a multi-frame).
When sending data through a switch core three types of checks are required, namely, a data integrity check, a path integrity check, and a flow integrity check. A data integrity check determines if the data was altered as it passes through the switch core. This is typically accomplished by adding a parity bit to the word of PCM data that is routed through the switch core. Generation and checking of parity is extremely simple. However, a parity bit does not permit path or flow integrity checking.
It is possible for a data path to become altered on occasion and for a given destination to be receiving data from the wrong source. Consequently, it is desirable to do a regular path integrity check. Many switch cores do not incorporate such a check. Those that do, often accomplish such a check by adding an extra bit to the word of PCM data that is routed through the switch core to implement a data link. By exchanging messages through this data link, connectivity can be regularly checked. The problem with this approach is that the circuitry to exchange such messages may be quite complex and slow to detect a path integrity failure.
A flow integrity check determines if data continues to flow via the switch core path. Many switch cores do not incorporate such a check. Those that do often accomplish a flow integrity check by adding an extra bit to the word of PCM data that is routed through the switch core. Such an extra bit implements a data link as for the extra bit for the path integrity check discussed above by which messages may be exchanged and flow integrity monitored. Typically, this is accomplished using the same bit as used for the data link. The problem with this approach, as for the path integrity check using an extra bit, is that the circuitry to exchange such messages may be quite complex and slow to detect a flow integrity failure.
Accordingly, it is an object of the invention to provide an improved method and apparatus for checking path and flow integrity.
It is a further object of the invention to provide a simple circuit for monitoring path and flow integrity.
It is a further object of the invention to provide an improved method and apparatus for checking data, path and flow integrity.
It is a further object of the invention to provide a simple circuit for monitoring the data, path and flow integrity.
SUMMARY OF THE INVENTION
According to the invention there is provided a method of monitoring the integrity of the path and flow of digital PCM data from a source end to a receiving end which includes generating a pseudo-random sequence of bits at the source end, transmitting the pseudo-random sequence of bits together with the PCM data through a transmission path to a receiving end and applying the pseudo-random sequence of bits to a pseudo-random bit sequence checker at the receiving end.
Preferably, the method includes phase aligning the pseudo-random bit sequence generator by initializing the bit registers of said generator to a preselected set of initial states not all of which are zero.
The pseudo-random bit sequence generator may consist of a shift register having a plurality of bit registers and a feedback circuit having feedback tap points on selected ones of said bit registers.
The pseudo-random bit sequence checker may have the same number of stages of bit registers and the same feedback tap points as the pseudo-random bit sequence generator.
The feedback circuit may have tap points are at the output of the last bit register and that of the second last bit register and may take the digital signals at those points apply them to an exclusive OR circuit with the output from the exclusive OR circuit being applied to the input of the pseudo-random bit sequence checker.
A system wide clock may be provided for use in operating the pseudo-random sequence generator and the pseudo-random bit sequence checker.
According to another aspect of the invention there is provided an apparatus for monitoring the integrity of the path and flow of digital PCM data from a source end to a receiving end which includes a pseudo-random sequence generator at the source end for generating a sequence of pseudo-random bits, means for transmitting the pseudo-random sequence of bits together with the PCM data through a transmission path to a receiving end; and a pseudo-random bit sequence checker at the receiving end having an input coupled to means for transmitting so as to receive said transmitted sequence of pseudo-random bits.
According to another aspect of the invention there is provided a method of monitoring the data, path and flow integrity of digital PCM data transmitted from a source end to a receiving end which includes generating a pseudo-random sequence of bits at the source end, generating parity bits, combining the pseudo-random sequence of bits with the parity bits; transmitting the combined pseudo-random sequence of bits and parity bits together with the PCM data through a transmission path to a receiving end, separating the pseudo-random sequence of bits from the parity bits and applying the pseudo-random sequence of bits to a pseudo-random bit sequence checker at the receiving end.
This method described in this further aspect of the invention utilizes the phase aligning, pseudo-random sequence generator, pseudo-random bit sequence checker, feedback circuit and clock as described previously.
Ac

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Data, path and flow integrity monitor does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Data, path and flow integrity monitor, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Data, path and flow integrity monitor will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2930777

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.