Data processing: database and file management or data structures – Database design – Data structure types
Reexamination Certificate
2002-08-12
2004-07-20
Mizrahi, Diane D. (Department: 2175)
Data processing: database and file management or data structures
Database design
Data structure types
C707S793000
Reexamination Certificate
active
06766327
ABSTRACT:
FIELD OF THE INVENTION
The invention is directed to a system and method for linking data that pertains to like entities. In particular, the invention is directed to a system and method for linking data where the links are encoded to discourage collusion by entities to whom the links are issued.
BACKGROUND OF THE INVENTION
Virtually all businesses today find it necessary to keep computerized databases containing information about their customers. Such information can be used in a variety of ways, such as for billing, and for keeping consumers informed as to sales and new products. This information is typically stored electronically as a series of records in a computer database, each record pertaining to a particular customer. Records are logical constructs that may be implemented in a computer database in any number of ways well known in the art. The database used may be flat, relational, or may take any one of several other known forms. Each record in the database may contain various fields, such as the customer's first name, last name, street address, city, state, and zip code. The records may also include more complex demographic data, such as the customer's marital status, estimated income, hobbies, or purchasing history.
Businesses generally gather customer data from a multitude of sources. These sources may be internal, such as customer purchases, or external, such as data provided by information service providers. A number of information service providers maintain large databases with broad-based consumer information that can be sold or leased to businesses; for example, a catalog-based retail business may purchase a list of potential customers in a specific geographic area.
Because businesses use varying methods to collect customer data, they often find themselves with several large but entirely independent databases that contain redundant information about their customers. These businesses have no means by which to accurately link all of the information concerning a particular customer. One common example of this problem is a bank that maintains a database for checking and savings account holders, a separate database for credit card holders, and a separate database for investment clients. Another common example is a large retailer that has separate databases supporting each of its divisions or business lines, which may include, for example, automotive repair, home improvement, traditional retail sales, e-commerce, and optometry services.
Businesses with multiple, independent databases may find it particularly valuable to know who among their customers come to them for multiple services. For example, a bank may wish to offer an enhanced suite of banking services to a customer that maintains only $100 in his or her savings account, if the bank could also determine that this same individual maintains a $100,000 brokerage account. This information could also be valuable, for example, to take advantage of cross-selling opportunities and to assist the business in optimizing the mix of services to best serve its existing customer base.
Linking all available data concerning each customer would also allow each of the business's divisions to have access to the most up-to-date information concerning each customer. For example, a customer may get married and relocate, then notify only one of the business's divisions concerning the change. Suppose that Sue Smith, a long-time and valued customer residing in Memphis, becomes Sue Thompson, residing in Minneapolis. If only one of the business's data processing systems “knows” about the change, the other systems would be unable to determine that Sue Thompson in Minneapolis is the same person as Sue Smith in Memphis. This problem may prevent the business from treating a customer as befitting that customer's value to the business. Treating a long-time customer as if she were a new customer would likely be found insulting, and may even result in a loss of that customer's business.
One of the oldest methods used to combat this problem is simply to assign a number to every customer, and then perform matching, searching, and data manipulation operations using that number. Many companies that maintain large, internal customer databases have implemented this type of system. In theory, each customer number always stays the same for each customer, even when that customer changes his or her name or address. These numbers may be used internally, for example, for billing and for tracking packages shipped to that customer. The use of a customer identification number eliminates the potential ambiguities if, for example, the customer's name and address were instead used as identifiers. Financial institutions in particular have used personal identification numbers (PINs) to unambiguously identify the proper customer to which each transaction pertains.
Customer number systems are inherently limited to certain applications. Customer identification numbers are not intended to manage a constantly changing, nationwide, comprehensive list of names and addresses. Companies maintaining these numbers are generally only interested in keeping up with their own customers. Thus the assignment process for such numbers is quite simple—when a customer approaches the company seeking to do business, a new number is assigned to that customer. The customer numbers are not the result of a broad-based process capable of managing the address and name history for a given customer. Significantly, the customer numbers are assigned based only on information presented to the business creating the numbers by the customers themselves. The numbers are not assigned from a multi-sourced data repository that functions independently of the company's day-to-day transactions. In short, the purpose of such numbers is simply transaction management, not universal data linkage. Such numbers are also not truly persistent, since they are typically retired by the company after a period of inactivity. Again, since the focus of the customer number assignment scheme is merely internal business transactions, there is no reason to persistently maintain a number for which no transactions are ongoing. These numbers cannot be used externally to link data because every company maintains a different set of customer numbers.
Although externally applied universal numbering systems have not been used for consumers, they have been made publicly available for use with retail products. The universal product code (UPC) system, popularly known as “bar codes,” began in the early 1970's when a need was seen in the grocery industry for a coding system that was common to all manufacturers. Today, the Uniform Code Council, Inc. (UCC) is responsible for assigning all bar codes for use with retail products, thereby maintaining a unique UPC number for every product regardless of the manufacturer. A database of these codes is made publicly available so that the codes can be used by everyone. Using this database, every retailer can track price and other information about each product sitting on its shelves. Today's product distribution chains also rely heavily on the UPC system to track products and make determinations concerning logistics and distribution channels.
While the UPC system has been enormously successful, the system's usefulness is limited. To obtain a UPC number for a new product, a manufacturer first applies for a UPC number, the product and number are added to the UCC database, and then the manufacturer applies the proper bar coding to its products before they are distributed. There is no scheme for assigning UPC numbers to pre-existing products, and no scheme for matching UPC numbers to the products they represent. Also, since each UPC number represents a single, distinct item packaged for retail sale, there is no scheme for identifying the various elements of a particular product to which a single UPC number is assigned. The UPC system thus could not be used to link various pre-existing data pertaining to consumers.
A final but vitally important
Anderson Walter E.
Harvey Shawn G.
Morgan, Jr. Charles D.
Talburt John R.
Talley Terry M.
Acxiom Corporation
Dougherty J. Charles
Mizrahi Diane D.
Mofiz Apu M
LandOfFree
Data linking system and method using encoded links does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Data linking system and method using encoded links, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Data linking system and method using encoded links will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3248977