Data connector for selective switching between at least two...

Electrical connectors – With insulation other than conductor sheath – Plural-contact coupling part

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Reexamination Certificate

active

06394853

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates generally to an apparatus that establishes electrical communication between a data connector and a multiconductor cable. More particularly, the present invention is directed to a high-speed data connector capable of accommodating mating connector plugs of varying configurations. Such a connector allows switching between at least two distinct cabling configurations without effecting a change in connector configuration or location.
BACKGROUND OF THE INVENTION
The integration of computers and computer-driven devices in contemporary society has elevated the role of the computer as a necessary tool for business, communication and recreation. As computers are called upon to support numerous, complementary tasks in commercial and residential environments, it has become imperative for multiple devices to communicate with one another so as to accomplish the desired tasks within a short duration. Such devices can establish electrical communication with one another via a plurality of well-established methods, such as internet or intranet connections that are established by ubiquitous standard telephone wires, Ethernet connections or operating systems that are Ethernet-compatible (i.e., token ring, fiber distributed data interface (FDDI), asynchronous transfer mode (ATM) and the like).,
The efficiency of any communication system and/or network is directly dependent upon the integrity of the connector scheme employed therein. Reliability, connection integrity and durability are important considerations, since wiring life cycles typically span periods of ten to twenty years. In order to properly address performance specifications for telecommunications connecting hardware, several industry standards have been established that specify multiple performance levels of twisted pair and unshielded twisted pair (UTP) cabling components, such as those promulgated by the International Organization for Standardization (ISO) and the International Electrotechnical Commission (IEC). In order for a connector to be qualified for a given performance category, it must meet all applicable transmission requirements regardless of design or intended use. A typical means for establishing the requisite communication connections is a telecommunications jack that receives a mating connector plug from a computer.
For high-speed applications, two commonly used connection systems are Category 6 and Category 7 cabling. Transmission characteristics for Category 6 cables are specified up to 250 MHz over 100 ohm twisted pairs, making Category 6 a good choice for generic applications. Category 6 cabling delivers the highest level of transmission performance available without individually screened pairs, resulting in the emergence of cable and connecting hardware configurations that are tuned to one another to achieve optimum performance. Yet as manufacturers have configured mated modular plug-and-jack combinations to work together to cancel cross-talk, incompatible cross-talk cancellation technologies from different plug and jack makers can put an entire operating system at risk of falling below the Category 6 specifications.
Transmission characteristics for Category 7 cabling are specified up to 600 MHz over 100 ohm twisted pairs. Unlike the Category 6 plugs, the Category 7 plugs provide shielding between each pair of signal paths within the jack so as to reduce cross talk. Category 7 components support many applications over twisted pair cabling as well as those that require fibers or coaxial cables. Category 7 cabling is fully shielded with individually screened twisted pairs and an overall shield, enabling superior performance and bandwidth at a fraction of the cost of fiber. The fully shielded construction of category 7 cable results in a larger outside diameter and less flexibility than UTP, requiring greater care in the design of pathways and termination spaces to allow for more space and larger bend radii. Fully shielded solutions that incorporate Category 7 cabling are applicable in environments with significant ambient noise (i.e. broadcast stations), or where radiated emissions must be minimized. Category 7 cabling is further applicable in information intensive industries that require high-speed data exchange to obtain competitive advantages. Residential and commercial buildings can also implement category 7 cabling as a single cable type that serves all copper cabling requirements with improved performance and reduced costs. Since each individual pair is shielded, Category 7 channels eliminate cross-talk noise between pairs, allowing Category 7 components to support multiple applications over one cable. Global acceptance of this standard has been impaired, however, by connecting components that are limited in terms of performance, ease of use, adaptability and size: Category 7 cabling requires connectors to provide at least 60 dB of cross-talk isolation between all pairs at 600 MHz, a requirement that is 20 dB more severe than Category 6 cabling at 250 MHz.
A standard jack that is used with high-speed connection lines (such as those associated with Category 6 and Category 7 cabling) is an RJ45 connector. The RJ45 connector allows interconnection with an eight-contact data cable and has the advantage of transferring more data in a given duration. Category 6 plugs, for instance, have a row of eight (8) contacts on the upper portion of the jack to connect with corresponding contacts in the plug. Category 7 connector system plugs have four (4) separate pairs of contacts, each pair located in a corner of the Category 7 plug housing so that that cross-talk between contact pairs is reduced upon separation from one another. An RJ45 jack having eight (8) contacts may therefore be used to connect either a Category 6 or a Category 7 cable.
Currently, a consumer has to choose either a Category 6 connection system or Category 7 connection system. The process of changing from one system to another requires changing both the connector plug and jack, introducing extreme difficulty, expense and inconvenience when a switch between cabling types is desirable due to the demands of the cabling application. This is particularly evident if the jack is installed inside of a wall or other structure that is not readily obvious or mutable.
It is therefore desirable to provide a connector jack that can be used with either a Category 6 or Category 7 mating connector plug without modifying the connector jack itself There is a continuing need for improved outlet connectors that fulfill both Category 6 and Category 7 performance requirements in order to satisfy the increasing bandwidth requirements of communication systems and networks. Accordingly, the connector used to terminate category 6 and 7 cabling must accommodate the transfer of data signals between jacks and plugs without significant loss of efficiency.
SUMMARY OF THE INVENTION
It is an advantage of the present invention to provide a data connector that can accommodate mating connector plugs of varying configurations.
It is another advantage of the present invention to provide a data connector that selectively switches between Category 6 and Category 7 cabling without making any adjustments to the connector.
It is yet another advantage of the present invention to substantially reduce the requisite number of components required for assembly of a switchable data connector.
It is still another advantage of the present invention to provide a data connector wherein all contacts are open while the connector is switched from category 6 cabling to category 7 cabling, thereby eliminating the possibility of shorting category 6 contacts to category 7 contacts.
In the efficient attainment of these and other advantages, the present invention provides a data connector in the form of a jack that accommodates at least two distinct types of mating connectors in the form of a plug. The data connector of the present invention securably receives at least two distinct types of mating connector plugs having different contact arrangements. The data con

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Data connector for selective switching between at least two... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Data connector for selective switching between at least two..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Data connector for selective switching between at least two... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2909509

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.