Computer graphics processing and selective visual display system – Display peripheral interface input device – Touch panel
Reissue Patent
2000-06-09
2004-10-26
Saras, Steven (Department: 2675)
Computer graphics processing and selective visual display system
Display peripheral interface input device
Touch panel
C345S169000, C235S386000
Reissue Patent
active
RE038637
ABSTRACT:
BACKGROUND
The present invention relates to a system for collecting data, and in particular to a low cost electronic data collection device.
Data collection processing has experienced numerous advances in the areas of equipment, software, and processes. However, the medium used to collect data has seen little or no improvement. The collection medium of choice remains paper. Accordingly, most if not all data collected in the form of applications, tax returns, surveys, ballots, tests, and the like, begins with filling out paper forms. Subsequent processing to collect the data off of the paper is manually intensive, error prone, time consuming, and costly.
Consider the simplest data collection process wherein a collection instrument comprising one or more sheets of paper, or a booklet, contains questions that a respondent is invited to answer. There may be an answer space next to each question wherein the respondent is to write in their response. After completion, the forms are collected and are manually inspected to collect response data. If the data is to be compiled, a data entry clerk or operator may be enlisted to transcribe the data into a log or computer database.
Such a system is very cumbersome due, in part, to the labor intensive nature of manually transcribing data from responses into a collective log or database. Indeed, a large cost component associated with conventional data collection processes of this sort, is the expense of labor dedicated to transcribing the data. In addition, manual transcription is susceptible to errors because of transcriber fatigue, misinterpretation, and human error. Turn around time also is slow because of the delays involved by manual transcription. The solution proposed, and now widely adopted, is to reduce the collection medium (e.g., the answer portion of the survey) to a machine readable form.
A machine readable collection medium involves reducing answers on a form to a selection of, for example, small ovals, wherein each oval corresponds to an answer choice. The collection medium can consist of one or more sheets wherein questions and answers are arranged next to one another. Alternatively, the collection medium can be in the form of a separate answer sheet. In either case an answer choice is indicated by filling in, or even punching out (if answer form is a punch card), a defined space corresponding to an answer choice. The answer form(s) is collected and fed into a scanning device that interprets answer indications.
A simple answer scanning system may involve a specially designed optical scanner that interprets machine readable forms by sensing which answer selection has been filled-in. The scanner may operate in combination with a computer having a software program that operates the scanner to and gathers information sensed by the scanner. The information gathered by the system is then formatted and reported as desired.
A problem remains, however, in that optical scanner systems have been known to mis-read poorly entered answers (e.g., the answer space not sufficiently blackened in). This impacts not only the accuracy of the collected data, but also the costs of completing data collection. The system must be required to identify mis-marked forms. These forms are then collected and visually inspected by operators who manually enter the answers, or fill in the respondent's intended answer(s) and re-scan re-marked form. However, as with completely manual data gathering and collection, this too requires expensive and time-consuming manual intervention to complete the data collection process.
Another problem with machine readable media is the difficulty involved in collecting handwritten text. Handwritten text can be collected and inspected in a machine readable media system in several ways. One way is to solicit a respondent to translate the handwritten text into a machine readable form by filling in a corresponding of oval for each letter (i.e., A through Z) from among a group of ovals that are respectively arranged below contiguous letter boxes in a handwritten entry portion of the answer form (e.g., see FIG.
1
). Another technique involves using a scanner in combination with a character recognition algorithm to interpret handwriting appearing in the contiguous boxes, or in an answer space. Both of these solutions, however, remain susceptible to machine reading errors. Consequently, visual review and manual entry are still required to complete data collection.
Systems, such as the aforementioned character recognition algorithms and optical imaging systems, designed for commercial scale operation are generally very expensive. Such systems can be utilized in data collection scenarios to process forms where a question may solicit a lengthy, handwritten, answer requiring a subjective response, or wherein a “Comments” section is provided. The costs of such systems is great because they typically involve complex combinations of paper sorting/routing machines and automatic scanners that operate in concert with sophisticated software programs running on customized computer platforms. A company or institution considering the purchase of a data collection system with any level of sophistication must contend with the fact that procurement of such a system involves a significant up-front investment. If the equipment is only used on an occasional basis, e.g., to perform an annual survey or to scan voting ballots, it represents non-performing idle capital equipment. Even with these systems, however, there remains the aforementioned accuracy problems that require manual intervention to overcome. Another problem with machine readable form systems is that the automated mechanisms designed to fold and stuff envelopes, open and unfold returned responses, and route and scan responses are prone to jamming.
One solution that moves away from paper forms is to enlist an electronic notepad that has a manually interactive display designed in accordance with data collection needs (e.g., inpatient medical chart notebook computer). Such systems, however, are merely special purpose notebook computers that remain relatively expensive. Furthermore, operation of such a data collection device usually requires training. In addition, such a device cannot be readily handed out in the manner that a test form, application form, survey, or the like, can be. Additionally, such a device cannot be easily mailed or folded.
What is needed is a data collection system that overcomes the foregoing disadvantages.
SUMMARY
The present invention overcomes the foregoing disadvantages by providing an electronic data collection device that completely replaces conventional paper forms in the data collection process. An electronic data collection device in accordance with exemplary embodiments of the invention is a combination of inexpensive, commercially available electronic components configured into a simple, substantially two-dimensional arrangement. The arrangement of components is fixed within one or more sheets of suitably thin, but durable material, such as paper or plastic. Such an arrangement is preferably rendered in form that is light and durable so that it can be folded, if necessary, so that it can be sent and returned via regular mail or by courier.
The arrangement, in an exemplary embodiment, includes a combination of electronic components comprising: input means, such as membrane switches, (e.g., corresponding to alphanumeric characters and/or function switches), for receiving user input responses; output means, such as a low profile LCD or LED information display; memory means, such as a simple memory device for storing system instructions, questions, and responses; logic means, such as a simple 8-bit CPU for controlling memory writes and retrieves, controlling the LCD, and receiving user responses; data transfer means, such as a simple radio frequency (RF) means, for transferring collected responses; and power means, such as a low profile battery, or solar cell, for providing power. The components are interconnected by a connection means, such as conductive ink,
iPaper, LLC
Jacobson & Holman PLLC
Nelson Alecia D.
Saras Steven
LandOfFree
Data collection system does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Data collection system, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Data collection system will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3317633