Drug – bio-affecting and body treating compositions – Designated organic active ingredient containing – Having -c- – wherein x is chalcogen – bonded directly to...
Reexamination Certificate
2007-12-25
2007-12-25
Aulakh, Charanjit S. (Department: 1625)
Drug, bio-affecting and body treating compositions
Designated organic active ingredient containing
Having -c-, wherein x is chalcogen, bonded directly to...
C546S048000, C546S061000, C514S284000
Reexamination Certificate
active
10553532
ABSTRACT:
The synthesis and biological activity of benzoisoindoloisoquinolone compounds are described. The synthesis and biological activity of C-11-substituted indenoisoquinolones are also described. Indenoisoquinolones substituted at C-11 are prepared by McMurry reactions of 11-ketoindenoisoquinolones with aldehydes.
REFERENCES:
patent: 5597831 (1997-01-01), Michalsky et al.
patent: 6509344 (2003-01-01), Cushman et al.
patent: 6828319 (2004-12-01), Jagtap et al.
patent: WO 97/43290 (1997-11-01), None
patent: 200021537 (2000-04-01), None
patent: WO 00/21537 (2000-04-01), None
patent: WO 01/30753 (2001-05-01), None
patent: 03051289 (2003-06-01), None
patent: 2004014862 (2004-02-01), None
patent: 2004014906 (2004-02-01), None
patent: 2004014918 (2004-02-01), None
Lal, B. et al.: Applications of carbon-nitrogen bond cleavage reaction : a synthesis/derivatization of 11H-indeno[1,2-c]isoquinolines. Indian J. Chem. , Sec. B, vol. 38B, pp. 33-39, 1999.
Gomes, L.M. et al.: New methodology for the preparation of the indeno[1,2-c]isoquinoline derivatives. Comptes rendus de 1′ Academie des Sciences, Serie II, vol. 310, pp. 1431-1435, 1990.
Antony et al., “Differential Induction of Topoisomerase I-DNA Cleavage Complexes by the Indenoisoquinoline MJ-III-65 (NSC 706744) and Camptothecin: Base Sequence Analysis and Activity Against Camptothecin-Resistant Topoisomerase I,” Cancer Res., 2003, vol. 63, pp. 7428-7435.
Antony et al., “Cellular Topoisomerase I Inhibition and Antiproliferative Activity by MJ-III-65 (NSC 706744), an Indenoisoquinoline Topoisomerase I Poison,” Molecular Pharmacology, 2005, vol. 67, No. 2, 523-530.
Canan Koch et al., “Enantioselective Preparation of B-Alkyl-y-butyrolactones from Functionalized Ketene Dithioacetals,” J. Org. Chem., 1993, vol. 58, No. 10, 2725-2737.
Corey et al., “A Total Synthesis of Natural 20(S)-Camptothecin,” J. Org. Chem., vol. 40, No. 14, 1975, pp. 2140-2141.
Cushman et al., “Stereoselective Oxidation by Thionyl Chloride Leading to the Indeno[1,2-c]isoquinoline System,” J. Org. Chem., 1978, vol. 43, No. 19, pp. 3781-3783.
Cushman et al., “Synthesis and Antitumor Activity of Structural Analogues of the Anticancer Benzophenanthridine Alkaloid Fagaronine Chloride,” J. Med. Chem., 1985, vol. 28, No. 8, pp. 1031-1036.
Cushman et al., “Synthesis and Biological Activity of Structural Analogues of the Anticancer Benzophenanthridine Alkaloid Nitidine Chloride,” J. Med. Chem., 1984, vol. 27, No. 4, 544-547.
Cushman et al., “Synthesis of New Indeno[1,2-c]isoquinolines: Cytotoxic Non-Camptothecin Topoisomerase I Inhibitors,” J. Med. Chem., 2000, vol. 43, No. 20, pp. 3688-3698.
Cushman et al., “Total Synthesis of Nitidine Chloride,” J. Org. Chem., 1978, vol. 43, No. 2, pp. 286-288.
Hertzberg et al., “On the Mechanism of Topoisomerase I Inhibition by Camptothecin: Evidence for Binding to an Enzyme-DNA Complex,” Biochemistry, 1989, vol. 28, No. 11, 4629-4638.
Hertzberg et al., “Modification of the Hydroxy Lactone Ring of Camptothecin: Inhibition of Mammalian Topoisomerase I and biological Activity,” J. Med. Chem., 1989, vol. 32, No. 3, 715-720.
Ioanoviciu et al., “Synthesis and Mechanism of Action Studies of a Series of Norindenoisoquinoline Topoisomerase I Poisons Reveal an Inhibitor with a Flipped Orientation in the Ternary DNA-Enzyme-Inhibitor Complex As Determined by X-ray Crystallographic Analysis,” J. Med. Chem., 2005, vol. 48, No. 15, 4803-4814.
Jayaraman et al., “Novel Oxidative Transformation of Indenoisoquinolines to Isoquinoline-3-spiro-3′-phthalides in the Presence of Osmium Tetraoxide and 4-methylmorpholine N-Oxide,” J. Org. Chem., 1998, vol. 63, No. 17, 5736-5737.
Jayaraman et al., “Synthesis of New Dihydroindeno[1,2-c]isoquinoline and Indenoisoquinolinium Chloride Topoisomerase I Inhibitors Having High In Vivo Anticancer Activity in the Hollow Fiber Animal Model,” J. Med. Chem., 2002, vol. 45, No. 1, pp. 242-249.
Kohlhagen et al., “Protein-Linked DNA Strand Breaks Induced by NSC 314622, a Novel Noncamptothecin Topoisomerase I Poison,” Mol. Pharmacol., 1998, vol. 54, pp. 50-58.
Kubova et al., “Binding Properties of Nitidine and Its Indenoisoquinoline Analogue wth DNA,” Studia Biophs., 1986, vol. 114, No. 1-3, pp. 251-256.
Li et al., “Synthesis of the Tricyclic ABC Ring Subunit of Mazamine A,” Tetrahedron, vol. 54 (1998), 6661-6676.
Morrell et al., “Synthesis of nitrated indenoisoquinoles as topoisomerase I inhibitors,” Bioorganic & Medicinal Chemistry Letters, vol. 14 (2004), 3659-3663.
Nagarajan et al., “Design, Synthesis, and Biological Evaluation of Indenoisoquinoline Topoisomerase I Inhibitors Featuring Polyamine Side Chains on the Lactam Nitrogen,” J. Med. Chem., 2003, vol. 46, No. 26, pp. 5712-5724.
Nagarajan et al., “Synthesis and Anticancer Activity of Simplified Indenoisoquinoline Topoisomerase I Inhibitors Lacking Substituents on the Aromatic Rings,” J. Med. Chem., 2004, vol. 47, No. 23, pp. 5651-5661.
Patel et al., “Neuromuscular blocking activity of bis-4-benzyltetrahydroisoquinolinium esters in the cat,” European Journal of Pharmaceutical Sciences , vol. 4 (1996), 63-71.
Pommier et al, Editorial Overview “Topoisomerase Inhibitors: Why New Ones?”, Opinion in Oncologic, Endocrine & Metabolic Investigational Drugs, 1(2), 168-169 (1999).
Pommier et al., “Mechanism and action of eukaryotic DNA topoisomerase I and drugs targeted to the enzyme,” Biochem. Biophys. Acta., 1400, 83-106 (1998).
Pourquier et al., “Induction of Reversible Complexes between Eukaryotic DNA Topoisomerase I and DNA-containing Oxidative Base Damages,” The Journal of Biological Chemistry, vol. 274, No. 13, 1999, pp. 8516-8523.
Shetty et al., “Aromatic -Stacking in Solution as Revealed through the Aggregation of Phenylacetylene Macrocycles,” J. Am. Chem. Soc., 1996, vol. 118, No. 5, pp. 1019-1027.
Somekawa et al., “Intramolecular [2+2]Photocycloadditions of 1-(w-Alkenyl)-2-pyridones Possessing an Ester Group on the Olefinic Carbon Chain,” J. Org. Chem., 1992, vol. 57, No. 21, 5708-5712.
Staker et al., “Structures of Three Classes of Anticancer Agents Bound to the Human Topoisomerase I-DNA Covalent Complex,” J. Med. Chem., 2005, vol. 48, No. 7, 2336-2345.
Staker et al., “The Mechanism of Topoisomerase I Poisoning by a Camptothecin Analog,” Proc. Natl. Acad. Sci. U.S.A., 2002, vol. 99, No. 24, pp. 15387-15392.
Strumberg et al., “Synthesis of Cytotoxic Indenoisoquinoline Topoisomerase I Poisons,” J. Med. Chem., 1999, vol. 42, No. 3, pp. 446-457.
Vance et al., “Structural Features of Nitroaromatics That Determine Mutagenic Activity inSalmonella typhimurium,” Environmental Mutagenesis, 1984, vol. 6, pp. 797-811.
Wang et al., “Differential Effects of Camptothecin Derivatives on Topoisomerase I-Mediated DNA Structure Modification,” Biochemistry, 1998, vol. 37, No. 26, 9399-9408.
Wang et al., “Role of the 20-Hydroxyl Group in Camptothecin Binding by the Topoisomerase I-DNA Binary Complex,” Biochemistry, 1999, vol. 38, No. 14, 4374-4381.
Wawzonek et al., “The Synthesis and Reactions of 1-Carbamyl-11-ketoindeno[1,2-c]isoquinoline,” J. Org. Chem., 1966, vol. 31, pp. 1004-1006.
Whitmore et al., “The Preparation of Homophthalyl Cyclic Hydrazide and 4-Aminohomophthalyl Cyclic Hydrazide,” J. Am. Chem. Soc., 1944, vol. 66, pp. 1237-1240.
Xiao et al., “Design, synthesis, and biological evaluation of cytotoxic 11-aminoalkenylindenoisoquinoline and 11-diaminoalkenylindenoisoquinoline topoisomerase I inhibitors,” Bioorganic & Medicinal Chemistry, vol. 12 (2004), 5147-5160.
Xiao et al., “Dihydroindenoisoquinolines function as prodrugs of indenoisoquinolines,” Bioorganic &
Cushman Mark S.
Pommier Yves G.
Aulakh Charanjit S.
Barnes & Thornburg LLP
Purdue Research Foundation
The United States of America as represented by the Secretary of
LandOfFree
Cytotoxic indeno and isoindoloisoquinolones does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Cytotoxic indeno and isoindoloisoquinolones, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Cytotoxic indeno and isoindoloisoquinolones will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3869198