Cytoskeletal active agents for glaucoma therapy

Drug – bio-affecting and body treating compositions – Designated organic active ingredient containing – Heterocyclic carbon compounds containing a hetero ring...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C514S456000, C514S912000, C514S913000

Reexamination Certificate

active

06586425

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates to the treatment of ocular disorders of the eye and more particularly to the treatment of glaucoma.
BACKGROUND OF THE INVENTION
I. Description And Characterization Of Glaucoma
Glaucoma is an ophthalmologic disorder responsible for visual impairment. It is the fourth most common cause of blindness and the second most common cause of visual loss in the United States, and the most common cause of irreversible visual loss among African-Americans. Generally speaking, the disease is characterized by a progressive neuropathy caused at least in part by deleterious effects resulting from increased intraocular pressure on the optic nerve. In normal individuals, intraocular pressures range from 12 to 20 mm Hg., averaging approximately 16 mm Hg. However, in individuals suffering from glaucoma, intraocular pressures generally rise above 25 to 30 mm Hg. and can sometimes reach 70 mm Hg. Importantly, the loss of vision can result from intraocular pressures only slightly above or even within the statistically normal range, in eyes which are unusually pressure-sensitive, over a period of years. Moreover, extremely high pressures (e.g., 70 mm Hg.) may cause blindness within only a few days (See e.g., Kaufman and Mittag, “Medical Therapy Of Glaucoma,” in Kaufman and Mittag (eds.),
Glaucoma
(Vol. 7 of Podos and Yanoff (eds),
Textbook of Ophthalmology
Series). London, Mosby-Year Book Europe Ltd. [1994], pp. 9.7-9.30; and Guyton,
Textbook of Medical Physiology,
6th ed. (W. B. Saunders Co.), pp. 386-89[1981]).
Several different types of glaucomas exist, each having different pathophysiologies and risk factors. In terms of classification, glaucomas may first be deemed to be either “primary” or “secondary.” Primary glaucomas, discussed further below, result directly from anatomical and/or physiological disturbances in the flow of aqueous humor (i.e., intraocular fluid). Secondary glaucomas occur as a sequel to ocular injury (e.g., trauma inflicted to the eye) or preexisting disease (e.g., an intraocular tumor or an enlarged cataract). Though the various secondary glaucomas have different etiologies, they are similar to the primary glaucomas in that they all produce visual loss through optic neuropathy.
The major types of primary glaucomas include (i) open-angle glaucoma (also known as chronic or simple glaucoma), (ii) angle-closure glaucoma (also known as closed-angle or narrow-angle glaucoma), and (iii) congenital glaucoma (also known as infantile glaucoma).
Open-angle glaucoma constitutes approximately 90% of all primary glaucomas. Open angle glaucoma is characterized by abnormally high resistance to fluid drainage from the eye. Intraocular pressure rises to the level required to drive the fluid normally produced by the eye, whose rate of formation is not altered in glaucoma, across the elevated resistance, according to the normal laws of physics governing passive bulk fluid flow across a resistance and down a pressure gradient. Normal resistance is required to maintain an intraocular pressure sufficient to: (i) maintain the shape of the eye (i.e., to keep it inflated) for optical integrity, and (ii) provide a pressure gradient to allow for the flow of aqueous humor, a fluid produced by the eye which provides for the metabolic needs of the avascular cornea and lens. This resistance is provided by the trabecular meshwork (TM), a complex tissue consisting of specialized endothelial cells, connective tissue beams, and extracellular matrix.
Angle-closure glaucoma entails closure or blockage of the anterior chamber angle by another ocular structure (usually the iris), thereby restricting outflow of aqueous humor. Though angle-closure glaucoma only constitutes approximately 5% of primary glaucomas, it requires immediate medical attention (See e.g., Kaufman and Mittag, “Medical Therapy Of Glaucoma,” supra).
II. Etiology of Glaucoma
Glaucoma has been associated with both pharmacological and non-pharmacological factors. Non-pharmacological factors include age, race, family history, diabetes, and blood pressure. For example, African Americans are four-to-five times as likely to develop open-angle glaucoma as are Caucasians. Similarly, open-angle glaucoma is much more prevalent in individuals over the age of 40, and especially in those over 60 years of age.
In addition, particular drugs have been associated with glaucoma. The corticosteroids (e.g., prednisone, dexamethasone, and hydrocortisone) are known to induce glaucoma following both ophthalmic and systemic administration by increasing resistance to aqueous humor outflow through the trabecular meshwork via a mechanism somehow genetically linked to primary open angle glaucoma. Dexamethasone has been associated with the most pronounced increase in intraocular pressure, and ophthalmic administration generally leads to greater increases than systemic administration.
Topically applied ophthalmic drugs which dilate the pupil (adrenergic agonists such as phenylephrine and epinephrine; anticholinergics such as atropine, scopolamine, homatropine, cyclopentolate and tropicamide) may induce angle-closure glaucoma, while the anticholinergics can increase resistance to aqueous humor outflow in susceptible individuals even without causing angle-closure, apparently related to their cycloplegic (ciliary muscle/accommodation-paralyzing) action. Adrenergic (e.g., central nervous system stimulants, appetite suppressants) and anticholinergic (e.g., bowel relaxants and tricyclic antidepressants) agents administered systemically may also induce angle closure glaucoma, via secondarily dilating the pupil.
III. Therapeutic Modalities
Current glaucoma therapies are restricted to reducing intraocular pressure. Presently, both surgical and pharmacological treatments are used.
A. Surgical Treatment
Both laser and incisional surgical procedures are employed. Although open-angle glaucoma is generally controlled by pharmacological agents, laser trabeculoplasty or filtering surgery to improve aqueous drainage can be considered in severe cases (See e.g.,
The Merck Manual of Diagnosis and Therapy
(16th Edition, 1992); Sec. 17: Ophthalmologic Disorders; Subsec. 227: Glaucoma; and Wilensky and Jampol, “Laser therapy for open angle glaucoma,” Ophthalmol., 88:203-212[1981]).
Because it constitutes a medical emergency, angle-closure glaucoma is the type of glaucoma that most frequently requires surgical intervention. As noted above, angle-closure glaucoma entails closure or blockage of the anterior chamber angle, thereby restricting outflow of aqueous humor. Angle-closure glaucoma can often be permanently cured by laser peripheral iridectomy performed within 12-48 hours after the onset of symptoms (Current Surgical Diagnosis & Treatment, 8th ed., Appleton & Lange, pp. 819-820[1988]). Though often necessary and quite effective for both open- and closed-angle glaucoma, surgical intervention is an invasive form of treatment, even if local anesthesia can be used.
B. Pharmacological Treatment
Chronic open-angle glaucoma is generally treated by ocular administration of one of several agents. For a particular patient, the concentration of the agent and the frequency of administration is generally determined by trial and error, beginning with one of the weaker available preparations (e.g., pilocarpine 1%). The miotic agents (i.e., agents that causes the pupil to contract) represent one frequently used class of glaucoma drugs. Though the precise mechanism of action has not yet been fully elucidated, the miotic drugs lower intraocular pressure in patients suffering from open angle glaucoma by facilitating aqueous humor outflow, in turn consequent to mechanical deformation of the trabecular meshwork by drug-induced contraction of the ciliary muscle. The miotics, appropriately referred to as cyclotonics in this context, may be either direct-acting (e.g., pilocarpine and carbachol, which act on the muscarinic receptors of the ciliary muscle to produce contraction) or indirect-acting (e.g., anti-cholinesteras

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Cytoskeletal active agents for glaucoma therapy does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Cytoskeletal active agents for glaucoma therapy, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Cytoskeletal active agents for glaucoma therapy will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3103952

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.