Multicellular living organisms and unmodified parts thereof and – Plant – seedling – plant seed – or plant part – per se – Higher plant – seedling – plant seed – or plant part
Patent
1996-07-03
1999-10-26
Smith, Lynette R. F.
Multicellular living organisms and unmodified parts thereof and
Plant, seedling, plant seed, or plant part, per se
Higher plant, seedling, plant seed, or plant part
800298, 800260, 800266, 800267, 536 243, 47 581, A01H 500, A01H 510, A01H 104
Patent
active
059732334
ABSTRACT:
Our invention comprises a gene restorer line of Brassica napus which contains a Raphanus sativus restorer gene but is essentially free of Raphanus sativus genes which produce high glucosinolate. In particular, we provide a gene restorer line, and progeny derived therefrom, seed of which is low in glucosinolates. The Brassica napus restorer lines are free of glucosinolate-producing genes having a characteristic RFLP signature. The method of producing such lines which comprises crossing Brassica napus restorer lines and hybrids with desired Brassica napus germplasm and selecting progeny having a characteristic RFLP signature is also encompassed by the present invention.
REFERENCES:
patent: 4517763 (1985-05-01), Beversdorf et al.
Chen, Z.Z., S. Snyder, Z.G. Fan and W.H. Loh. 1994. Efficient production of doubled haploid plants through chromosome doubling of isolated microspores in Brassica apus. Plant Breeding 113: 217-221.
Delourme, R., F. Eber and M. Renard. 1991. Radish cytoplasmic male sterility in rapeseed: breeding restorer lines with a good female fertility. Proc 8th Int Rapeseed Conf. Saskatoon, Canada. pp. 1506-1510.
Delourme, R., A. Bouchereau, N. Hubert, M. Renard and B.S. Landry. 1994. Identification of RAPD markers linked to a fertility restorer gene for the Ogura radish cytoplasmic male sterility of rapeseed (Brassica napus L.). Theor Appl Genet. 88: 741-748.
Heyn, F.W. 1976. Transfer of restorer genes from Raphanus to cytoplasmic male-sterile Brassica napus. Crucierase Newsletter. 1: 15-16.
Magrath, R., C. Herron, A. Giamoustrais and R. Mithen. 1993. The inheritance of aliphatic glucosinolates in Brassica napus. Plant Breeding 111: 55-72.
Mailer, R.J. and P.S. Cornish. 1987. Effects of water stress on glucosinolate and oil concentrations in the seeds of rape (Brassica napus L.) and turnip rape (Brassica rapa L. var. sylvestris [Lam.] Briggs). Aust. J. Exp. Agric. 27: 707-711.
Mollers, C., M.C.M. Iqbal and G. Robbelen. 1994, Efficient production of doubled haploid Brassica napus plants by colchicine treatment of microspores, Euphytica 75: 95-104.
Pelletier, G., C. Primard, F. Vedel, P. Chetrit, R. Remy, P. Rousselle and M. Renard, 1983. Intergeneric cytoplasmic hybridization in Cruciferae by protoplast fusion. Mol Gen Genet. 191:244-250.
McGregor, D.I. and R.K. Downey. 1975. A rapid and simple assay for identifying low glucosinolate rapeseed. Can. J. Plant Sci. 55: 191-196.
Rucker, B. and G. Robbelen. 1994. Inheritance of total and individual glucosinolate contents in seeds of winter oilseed rape (Brassica napus L.) Plant Breeding. 113: 206-216.
Steele, R.G.D. and J.H. Torrie, 1980. Principles and Procedures of Statistics. McGraw-Hill Book Company.
Toroser D., RFLP mapping quantitive trait loci controlling seed aliphatic glucosinolate content in oilseed rape (Brassica napus L.) Theror Appl. Genet, No. 91, 1995, pp. 802-808, XP002079215 , p. 807, left-hand col., paragraph 2--right-hand col., last paragraph abstract.
Delmourme et al. Identification of RAPD markers linked to a fertility restorer gene for the Ogura radish cytoplasmic male sterility of rapeseed (Brassica napus L.). Theoretical Applied Genetics. vol. 88 pp. 741-748, 1994.
Mailer et al. Field studies of moisture availabilitly effects on glucosinolate and oil concentration in the seed of rape, (Brassica napus L.) and turnip rape (Brassica rapa L. var. sivestris (Lam.) Briggs). Canadian Journal of Plant Science. vol. 70 pp, 1990.
Visentin et al. Isolation and identification of trans-4-(methylthio)-3-butenyl glucosinolate from radish roots (Raphanus sativus L.) Journal of Agricultural Food Chemistry. vol. 40 pp. 1687-1691, 1992.
Beversdorf, Wallace D. et al., "Hybridization Using Cytoplasmic Male Sterility and Herbicide Tolerance from Nuclear Genes", United States Patent 4,658,084. Date of Patent: Apr. 14, 1987.
Fabijanski, Steven F. et al., "Antisense Gene Systems of Pollination Control for Hybrid Seed Production", United States Patent 5,356,799. Date of Patent: Oct. 18, 1994.
Albertsen, Marc C. et. al., "Nucleotide Sequences Mediating Male Fertility and Method of Using Same", United States Patent 5,478,369. Date of Patent: Dec. 26, 1995.
Delourme, R. and Eber, F. "Linkage Between an Isozyme Marker and a Restorer Gene in Radish Cytoplasmic Male Sterility of Rapeseed (Brassica napus L.)". Published in Theoretical and Applied Genetics (1992 ) vol. 85, pp. 222-228.
Delourme, R.; Bouchereau, A.; Hubert, N.; Renard, M.; and Landry, B.S. "Identification of RAPD Markers Linked to a Fertility Restorer Gene for the Ogura Radish Cytoplasmic Male Sterility of Rapeseed (Brassica Napus L.)." Published in Theoretical and Applied Genetics (1994) vol. 88, pp. 741-748.
Meng Jingling; Gan Li; and Cheng Bifang. "Two New Cytoplasmic Male Sterile Lines of Brassica Napus Breed Through Interspecific Hybridization." Published in Journal Huazhong Agricultural University (1995) vol. 14, pp. 21-25, see abstract.
Ecke et al. RFLP mapping of the oilseed rape genome as a prerequisite for maker-assisted selection of quality traits. Bericht uber die Arbeitstagung der Arbeitsgemeinschaft der Saatzuchtleiter im Rahmen der Vereingung Osterreichshher Pflanzanzuchter. vol. 44 pp. 75-84, 1993.
Delourme R., Breeding double low restorer lines in radish cytoplasmic male sterility of rapeseed (Brassica napus L.) A Three page publication from the proceedings of the Jul. 4-7 1995 9th International Rapeseed Congress in Cambridge, UK.
Barnes Steve
Burns Dale R.
Buzza Greg C.
Forhan Mark A.
Huskowska Teresa
Kimball Melissa L.
Rewoldt Dana
Smith Lynette R. F.
Zenco (No. 4) Limited
LandOfFree
Cytoplasmic male sterility system production canola hybrids does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Cytoplasmic male sterility system production canola hybrids, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Cytoplasmic male sterility system production canola hybrids will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-766995