Cytological imaging system and method

Optics: measuring and testing – Blood analysis

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C422S082010, C436S164000

Reexamination Certificate

active

06665060

ABSTRACT:

TECHNICAL FIELD
The present invention relates to the analysis of cytological material. Specifically, the invention relates to stains and methods of producing the stains, methods of staining cells for cytological or histological analysis to contrast the nuclear portion of the cell from the cytoplasmic portion, and systems and methods for illuminating a cytological sample. The analysis can be automated or manual.
BACKGROUND INFORMATION
Cytology is the branch of biology dealing with the study of the formation, structure, and function of cells. As applied in a laboratory setting, cytologists, cytotechnologists, and other medical professionals make medical diagnoses of a patient's condition based on visual examination of a specimen of the patient's cells. A typical cytological technique is a “Pap smear” test, in which cells are scraped from a woman's cervix and analyzed in order to detect the presence of abnormal cells, a precursor to the onset of cervical cancer. Cytological techniques are also used to detect abnormal cells and disease in other parts of the human body.
Cytological techniques are widely employed because collection of cell samples for analysis is generally less invasive than traditional surgical pathological procedures such as biopsies, whereby a tissue specimen is excised from the patient using specialized biopsy needles having spring loaded translatable stylets, fixed cannulae, and the like. Cell samples may be obtained from the patient by a variety of techniques including, for example, by scraping or swabbing an area, or by using a needle to aspirate body fluids from the chest cavity, bladder, spinal canal, or other appropriate area. The cell samples are placed in solution and subsequently collected and transferred to a glass slide for viewing under magnification. Fixative and staining solutions are typically applied to the cells on the glass slide, often called a cell smear, for facilitating examination and for preserving the specimen for archival purposes.
A traditional multicolored stain is desirable for staining cell smears for certain cytological analyses. It is advantageous to stain the nucleus and the cytoplasm of the specimen with different colors, so that the nuclear material and cytoplasmic material can be readily distinguished either visually or by automated imaging equipment. In one staining practice, the cytoplasm is transparent, whereas the nucleus is transparent to opaque. This staining pattern allows the cytologist to distinguish cells which are morphologically abnormal indicated, for example, by nuclear material which is excessively large and/or dark in color. In addition, cytologists find the variety of colors of the traditional stains, particularly the Papanicolaou stain, helpful to reduce eye strain and to aid diagnosis.
Traditional stains, including the Papanicolaou stain, are difficult for an automated system to analyze. The variety of colors in the cytoplasm from traditional stains, which are straightforward for the human eye to distinguish, are not readily analyzed with automated imaging systems because they contrast to varying degrees with the traditional blue hematoxylin stain of the nucleus. The varying contrast makes automated analysis unreliable.
During the approximately seventy years since its introduction, the original Papanicolaou stain has undergone many modifications. Currently, the dyes, reagents, and methodology vary widely based on the preferences of each laboratory. While standardization of a Papanicolaou-like stain has been proposed for many years, there has been little incentive for laboratories to do so. This variability affects current imaging technologies which may reject numerous slides either because of problems inherent with a conventional Pap smear preparation, or because of poor staining that produces nuclear-cytoplasmic contrast that is inadequate for image acquisition and analysis.
A number of researchers have developed algorithms in an attempt to attain automated analysis of cells stained with the multicolored Papanicolaou stain. Such techniques involve the use of various instrumental artifacts, such as different colors of light, filters, and color television cameras. Many require a high level of sophistication that is costly in terms of hardware and software. Further, these approaches have not proven accurate and reliable enough to be widely used in clinical cytological and histological diagnoses.
Conventional machine vision illumination sources are low efficiency broadband sources such as tungsten-halogen, sodium-halide, or xenon lamps. These sources convert a small percentage of their input energy to broadband light. Accordingly, efficiency drops significantly in a cytological application that requires a narrow band light source. Typically, these devices generate a significant amount of heat, require filters for obtaining correct wavelengths, and are relatively large.
It is an object of the present invention to provide a stain that creates a high contrast between the nucleus and the cytoplasm of a cell. It is a further object of the invention to stain the cytological material such that the cytoplasm is relatively transparent to an automated machine vision system, but visible to an observer.
It is another object of the invention to provide a stain with a dual peak responsiveness when exposed to two distinct light wavelengths and a system for verifying a specific stain was used based on the dual peak responsiveness.
It is still a further object of the present invention to provide a method of cytological analysis in which the cells are multicolored and the nuclear portion is readily distinguishable from the cytoplasmic portion, both with automated imaging equipment and with human vision analysis.
It is yet another object to provide a method of cytological analysis in which the characteristics of the stained cells can be accurately determined with both manual and automated analysis procedures.
An additional object of the present invention is to provide a system and method for illuminating cytological samples, wherein the illumination is supplied by two different light sources with two different wavelengths. One light source verifies the stain used and the other light source facilitates analysis of the cytological sample.
SUMMARY OF THE INVENTION
Generally, the invention addresses the problems outlined above by means of unique stains, methods of staining cytological material, and illumination systems. Other techniques for addressing some of the drawbacks associated with the traditional Papanicaloau stains are disclosed in U.S. Pat. No. 5,168,066, assigned to the same assignee as the instant application, the disclosure of which is hereby incorporated by reference in its entirety.
In one aspect, the invention relates to a cytological staining solution. The solution includes methanol, phenol, and thionin. In some embodiments, an acid may be present. The acid can be almost any acid traditionally used to adjust the pH of a solution. For example, acetic acid, nitric acid, hydrochloric acid, phosphoric acid, formic acid, sulfuric acid, or citric acid could be used. In various embodiments, the methanol used can be various grades, the phenol source can be loose crystals having an ACS grade of at least about 95%, the thionin can be a certified dye powder, and the acid can be glacial acetic acid of various grades. The ACS grade is an indicator of the purity of the components. Components in accordance with equivalent grading systems are acceptable. In addition, the thionin can be synthesized. In one embodiment, the staining solution has an acidic pH value, preferably about 5-7, and more preferably about 6.70+/−0.05. In one embodiment, the phenol has a weight to volume ratio of about 0.8% to about 1.2%, and preferably about 1.0%. In another embodiment, the thionin has a weight to volume ratio of about 0.2% to about 0.5%, preferably about 0.3% to about 0.4%, and more preferably about 0.345%. The weight to volume ratio, expressed as wt/v, is a measure of the weight of any one component as a percentage o

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Cytological imaging system and method does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Cytological imaging system and method, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Cytological imaging system and method will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3096503

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.