Cytokine receptor zalpha11 polypeptides

Chemistry: natural resins or derivatives; peptides or proteins; – Proteins – i.e. – more than 100 amino acid residues – Lymphokines – e.g. – interferons – interlukins – etc.

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C530S387300, C530S395000, C435S335000

Reexamination Certificate

active

06803451

ABSTRACT:

BACKGROUND OF THE INVENTION
Hormones and polypeptide growth factors control proliferation and differentiation of cells of multicellular organisms. These diffusable molecules allow cells to communicate with each other and act in concert to form cells and organs, and to repair damaged tissue. Examples of hormones and growth factors include the steroid hormones (e.g. estrogen, testosterone), parathyroid hormone, follicle stimulating hormone, the interleukins, platelet derived growth factor (PDGF), epidermal growth factor (EGF), granulocyte-macrophage colony stimulating factor (GM-CSF), erythropoietin (EPO) and calcitonin.
Hormones and growth factors influence cellular metabolism by binding to receptors. Receptors may be integral membrane proteins that are linked to signaling pathways within the cell, such as second messenger systems. Other classes of receptors are soluble molecules, such as the transcription factors. Of particular interest are receptors for cytokines, molecules that promote the proliferation and/or differentiation of cells. Examples of cytokines include erythropoietin (EPO), which stimulates the development of red blood cells; thrombopoietin (TPO), which stimulates development of cells of the megakaryocyte lineage; and granulocyte-colony stimulating factor (G-CSF), which stimulates development of neutrophils. These cytokines are useful in restoring normal blood cell levels in patients suffering from anemia, thrombocytopenia, and neutropenia or receiving chemotherapy for cancer.
The demonstrated in vivo activities of these cytokines illustrate the enormous clinical potential of, and need for, other cytokines, cytokine agonists, and cytokine antagonists. The present invention addresses these needs by providing new a hematopoietic cytokine receptor, as well as related compositions and methods.
The present invention provides such polypeptides for these and other uses that should be apparent to those skilled in the art from the teachings herein.
SUMMARY OF THE INVENTION
Within one aspect, the present invention provides an isolated polynucleotide that encodes a zalpha11 polypeptide comprising a sequence of amino acid residues that is at least 90% identical to an amino acid sequence selected from the group consisting of: (a) the amino acid sequence as shown in SEQ ID NO:2 from amino acid number 20 (Cys), to amino acid number 237 (His); (b) the amino acid sequence as shown in SEQ ID NO:2 from amino acid number 20 (Cys), to amino acid number 255 (Leu); (c) the amino acid sequence as shown in SEQ ID NO:2 from amino acid number 256 (Lys), to amino acid number 538 (Ser); (d) the amino acid sequence as shown in SEQ ID NO:2 from amino acid number 20 (Cys), to amino acid number 538 (Ser); and (e) the amino acid sequence as shown in SEQ ID NO:2 from amino acid number 1 (Met) to amino acid number 538 (Ser), wherein the amino acid percent identity is determined using a FASTA program with ktup=1, gap opening penalty=10, gap extension penalty=1, and substitution matrix=BLOSUM62, with other parameters set as default. Within one embodiment, the isolated polynucleotide disclosed above comprises a sequence of polynucleotides that is selected from the group consisting of: (a) a polynucleotide sequence as shown in SEQ ID NO:4 from nucleotide 1 to nucleotide 1614; (b) a polynucleotide sequence as shown in SEQ ID NO:1 from nucleotide 126 to nucleotide 779; (c) a polynucleotide sequence as shown in SEQ ID NO: 1 from nucleotide 126 to nucleotide 833; (d) a polynucleotide sequence as shown in SEQ ID NO: 1 from nucleotide 834 to nucleotide 1682; (e) a polynucleotide sequence as shown in SEQ ID NO: 1 from nucleotide 126 to nucleotide 1682; and (f) a polynucleotide sequence as shown in SEQ ID NO: 1 from nucleotide 69 to nucleotide 1682. Within another embodiment, the isolated polynucleotide disclosed above comprises a sequence of amino acid residues selected from the group consisting of: (a) the amino acid sequence as shown in SEQ ID NO:2 from amino acid number 20 (Cys), to amino acid number 237 (His); (b) the amino acid sequence as shown in SEQ ID NO:2 from amino acid number 20 (Cys), to amino acid number 255 (Leu); (c) the amino acid sequence as shown in SEQ ID NO:2 from amino acid number 256 (Lys), to amino acid number 538 (Ser); (d) the amino acid sequence as shown in SEQ ID NO:2 from amino acid number 20 (Cys), to amino acid number 538 (Ser); and (e) the amino acid sequence as shown in SEQ ID NO:2 from amino acid number 1 (Met) to amino acid number 538 (Ser). Within another embodiment, the isolated polynucleotide disclosed above consists of a sequence of amino acid residues selected from the group consisting of: (a) the amino acid sequence as shown in SEQ ID NO:2 from amino acid number 20 (Cys), to amino acid number 237 (His); (b) the amino acid sequence as shown in SEQ ID NO:2 from amino acid number 20 (Cys), to amino acid number 255 (Leu); (c) the amino acid sequence as shown in SEQ ID NO:2 from amino acid number 256 (Lys), to amino acid number 538 (Ser); (d) the amino acid sequence as shown in SEQ ID NO:2 from amino acid number 20 (Cys), to amino acid number 538 (Ser); and (e) the amino acid sequence as shown in SEQ ID NO:2 from amino acid number 1 (Met) to amino acid number 538 (Ser). Within another embodiment, the isolated polynucleotide disclosed above further comprises a WSWSX domain. Within another embodiment, the isolated polynucleotide disclosed above further comprises a transmembrane domain. Within another embodiment, the isolated polynucleotide disclosed above comprises a transmembrane domain consisting of residues 238 (Leu) to 255 (Leu) of SEQ ID NO:2. Within another embodiment, the isolated polynucleotide disclosed above further comprises an intracellular domain. Within another embodiment, the isolated polynucleotide disclosed above comprises an intracellular domain consists of residues 256 (Lys) to 538 (Ser) of SEQ ID NO:2. Within another embodiment, the isolated polynucleotide disclosed above comprises an intracellular domain which domain further comprises Box I and Box II sites. comprises an intracellular domain wherein the polypeptide further comprises an affinity tag.
Within a second aspect, the present invention provides an expression vector comprising the following operably linked elements: a transcription promoter; a DNA segment encoding a zalpha11 polypeptide having an amino acid sequence as shown in SEQ ID NO:2 from amino acid number 20 (Cys), to amino acid number 538 (Ser); and a transcription terminator, wherein the promoter is operably linked to the DNA segment, and the DNA segment is operably linked to the transcription terminator.
Within one embodiment, the expression vector disclosed above further comprisies a secretory signal sequence operably linked to the DNA segment.
Within a third aspect, the present invention provides a cultured cell comprising an expression vector as disclosed above, wherein the cell expresses a polypeptide encoded by the DNA segment.
Within a fourth aspect, the present invention provides an expression vector comprising: a transcription promoter; a DNA segment encoding a zalpha11 polypeptide having an amino acid sequence as shown in SEQ ID NO:2 from amino acid number 20 (Cys), to amino acid number 237 (His); and a transcription terminator, wherein the promoter, DNA segment, and terminator are operably linked. Within one embodiment, the expression vector disclosed above further comprises a secretory signal sequence operably linked to the DNA segment. Within another embodiment, the expression vector disclosed above further comprises a transmembrane domain operably linked to the DNA segment. Within another embodiment, the expression vector disclosed above further comprises a transmembrane domain consisting of residues 238(Leu) to 255 (Leu) of SEQ Ip NO:2. Within another embodiment, the expression vector disclosed above further comprises an intracellular domain operably linked to the DNA segment. Within another embodiment, the expression vector disclosed above further comprises an intracellular domain consisting o

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Cytokine receptor zalpha11 polypeptides does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Cytokine receptor zalpha11 polypeptides, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Cytokine receptor zalpha11 polypeptides will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3315594

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.